Pyodide里的Tensorflow目录

可以跑通基本的训练、使用模型过程
This commit is contained in:
RXXXBNUer
2025-10-04 11:24:10 +08:00
parent 57b59e7d33
commit fe343c67ff
30 changed files with 1459 additions and 419 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because one or more lines are too long

View File

@@ -4009,4 +4009,36 @@ En.MIXLY_TINY_WEB_DB_START_NUMBER = 'Start number';
En.MIXLY_TINY_WEB_DB_VARIABLE_NUMBER = 'Number of variables';
En.MIXLY_TINY_WEB_DB_SEARCH_VARS = 'Characters in variable names';
En.MIXLY_TENSORFLOW_INIT_TENSOR = 'Initialize tensor as';
En.MIXLY_TENSORFLOW_SEQUENTIAL = 'Initialize sequential model';
En.MIXLY_TENSORFLOW_INIT_LAYERS_DENSE_LAYER = 'Build dense layer';
En.MIXLY_TENSORFLOW_OUTPUT_DIMENSION = 'Output dimension';
En.MIXLY_TENSORFLOW_INPUT_SHAPE = 'Input shape';
En.MIXLY_TENSORFLOW_MODEL = 'Model';
En.MIXLY_TENSORFLOW_ADD_LAYER = 'Add layer';
En.MIXLY_TENSORFLOW_COMPILE_MODEL = 'Compile model';
En.MIXLY_TENSORFLOW_LOSS_FUNCTION_TYPE = 'Loss function type';
En.MIXLY_TENSORFLOW_MEAN_SQUARED_ERROR = 'Mean squared error';
En.MIXLY_TENSORFLOW_OPTIMIZER = 'Optimizer';
En.MIXLY_TENSORFLOW_SGD = 'Stochastic gradient descent';
En.MIXLY_TENSORFLOW_FIT_MODEL = 'Train model';
En.MIXLY_TENSORFLOW_FIT_INPUT_DATA = 'Input data';
En.MIXLY_TENSORFLOW_FIT_TARGET_DATA = 'Target data';
En.MIXLY_TENSORFLOW_FIT_EPOCHS = 'Training epochs';
En.MIXLY_TENSORFLOW_FIT_VERBOSE = 'Verbose level';
En.MIXLY_TENSORFLOW_FIT_RETURN_HISTORY = 'Return training history object';
En.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY = 'From training history object';
En.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY_2 = 'Get training loss values array';
En.MIXLY_TENSORFLOW_PREDICT = 'Use model for prediction';
En.MIXLY_TENSORFLOW_PREDICT_INPUT_DATA = 'Input data';
En.MIXLY_TENSORFLOW_PREDICT_RETURN_RESULT = 'Return prediction result tensor';
En.MIXLY_TENSORFLOW_GET_TENSOR_DATA = 'Get data from tensor';
En.MIXLY_TENSORFLOW_SAVE_MODEL = 'Save model';
En.MIXLY_TENSORFLOW_EXPORT_MODEL = 'Export model';
En.MIXLY_TENSORFLOW_SAVE_MODEL_NAME = 'Name';
En.MIXLY_TENSORFLOW_LOAD_MODEL = 'Use imported model';
En.MIXLY_TENSORFLOW_MODEL_NAME = 'Model name';
En.MIXLY_TENSORFLOW_PREPARE_PICTURE_TO_TENSOR = 'Preprocess image to tensor';
En.MIXLY_TENSORFLOW_PREPARE_PICTURE_READ_PICTURE = 'Read image';
})();

View File

@@ -4168,4 +4168,35 @@ ZhHans.MIXLY_TINY_WEB_DB_START_NUMBER = '起始编号';
ZhHans.MIXLY_TINY_WEB_DB_VARIABLE_NUMBER = '变量个数';
ZhHans.MIXLY_TINY_WEB_DB_SEARCH_VARS = '变量名包含的字符';
ZhHans.MIXLY_TENSORFLOW_INIT_TENSOR = '初始化张量为';
ZhHans.MIXLY_TENSORFLOW_SEQUENTIAL = '初始化顺序模型';
ZhHans.MIXLY_TENSORFLOW_INIT_LAYERS_DENSE_LAYER = '构建全连接层';
ZhHans.MIXLY_TENSORFLOW_OUTPUT_DIMENSION = '输出维度';
ZhHans.MIXLY_TENSORFLOW_INPUT_SHAPE = '输入形状';
ZhHans.MIXLY_TENSORFLOW_MODEL = '模型';
ZhHans.MIXLY_TENSORFLOW_ADD_LAYER = '添加层';
ZhHans.MIXLY_TENSORFLOW_COMPILE_MODEL = '编译模型';
ZhHans.MIXLY_TENSORFLOW_LOSS_FUNCTION_TYPE = '损失函数类型';
ZhHans.MIXLY_TENSORFLOW_MEAN_SQUARED_ERROR = '均方误差';
ZhHans.MIXLY_TENSORFLOW_OPTIMIZER = '优化器';
ZhHans.MIXLY_TENSORFLOW_SGD = '随机梯度下降法';
ZhHans.MIXLY_TENSORFLOW_FIT_MODEL = '训练模型';
ZhHans.MIXLY_TENSORFLOW_FIT_INPUT_DATA = '输入数据';
ZhHans.MIXLY_TENSORFLOW_FIT_TARGET_DATA = '目标数据';
ZhHans.MIXLY_TENSORFLOW_FIT_EPOCHS = '训练迭代次数';
ZhHans.MIXLY_TENSORFLOW_FIT_VERBOSE = '日志输出级别';
ZhHans.MIXLY_TENSORFLOW_FIT_RETURN_HISTORY = '返回训练历史对象';
ZhHans.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY = '从训练历史对象';
ZhHans.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY_2 = '获取训练损失值数组';
ZhHans.MIXLY_TENSORFLOW_PREDICT = '使用模型预测';
ZhHans.MIXLY_TENSORFLOW_PREDICT_INPUT_DATA = '输入数据';
ZhHans.MIXLY_TENSORFLOW_PREDICT_RETURN_RESULT = '返回预测结果张量';
ZhHans.MIXLY_TENSORFLOW_GET_TENSOR_DATA = '获取张量中的数据';
ZhHans.MIXLY_TENSORFLOW_SAVE_MODEL = '保存模型';
ZhHans.MIXLY_TENSORFLOW_EXPORT_MODEL = '导出模型';
ZhHans.MIXLY_TENSORFLOW_SAVE_MODEL_NAME = '名称';
ZhHans.MIXLY_TENSORFLOW_LOAD_MODEL = '使用导入模型';
ZhHans.MIXLY_TENSORFLOW_MODEL_NAME = '模型名';
ZhHans.MIXLY_TENSORFLOW_PREPARE_PICTURE_TO_TENSOR = '预处理图像为张量';
ZhHans.MIXLY_TENSORFLOW_PREPARE_PICTURE_READ_PICTURE = '读入图像';
})();

View File

@@ -4163,4 +4163,35 @@ ZhHant.MIXLY_TINY_WEB_DB_START_NUMBER = '起始編號';
ZhHant.MIXLY_TINY_WEB_DB_VARIABLE_NUMBER = '變數個數';
ZhHant.MIXLY_TINY_WEB_DB_SEARCH_VARS = '變數名稱包含的字元';
ZhHant.MIXLY_TENSORFLOW_INIT_TENSOR = '初始化張量為';
ZhHant.MIXLY_TENSORFLOW_SEQUENTIAL = '初始化順序模型';
ZhHant.MIXLY_TENSORFLOW_INIT_LAYERS_DENSE_LAYER = '構建全連接層';
ZhHant.MIXLY_TENSORFLOW_OUTPUT_DIMENSION = '輸出維度';
ZhHant.MIXLY_TENSORFLOW_INPUT_SHAPE = '輸入形狀';
ZhHant.MIXLY_TENSORFLOW_MODEL = '模型';
ZhHant.MIXLY_TENSORFLOW_ADD_LAYER = '添加層';
ZhHant.MIXLY_TENSORFLOW_COMPILE_MODEL = '編譯模型';
ZhHant.MIXLY_TENSORFLOW_LOSS_FUNCTION_TYPE = '損失函數類型';
ZhHant.MIXLY_TENSORFLOW_MEAN_SQUARED_ERROR = '均方誤差';
ZhHant.MIXLY_TENSORFLOW_OPTIMIZER = '優化器';
ZhHant.MIXLY_TENSORFLOW_SGD = '隨機梯度下降法';
ZhHant.MIXLY_TENSORFLOW_FIT_MODEL = '訓練模型';
ZhHant.MIXLY_TENSORFLOW_FIT_INPUT_DATA = '輸入數據';
ZhHant.MIXLY_TENSORFLOW_FIT_TARGET_DATA = '目標數據';
ZhHant.MIXLY_TENSORFLOW_FIT_EPOCHS = '訓練迭代次數';
ZhHant.MIXLY_TENSORFLOW_FIT_VERBOSE = '日誌輸出級別';
ZhHant.MIXLY_TENSORFLOW_FIT_RETURN_HISTORY = '返回訓練歷史對象';
ZhHant.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY = '從訓練歷史對象';
ZhHant.MIXLY_TENSORFLOW_GET_LOSS_FROM_HISTORY_2 = '獲取訓練損失值數組';
ZhHant.MIXLY_TENSORFLOW_PREDICT = '使用模型預測';
ZhHant.MIXLY_TENSORFLOW_PREDICT_INPUT_DATA = '輸入數據';
ZhHant.MIXLY_TENSORFLOW_PREDICT_RETURN_RESULT = '返回預測結果張量';
ZhHant.MIXLY_TENSORFLOW_GET_TENSOR_DATA = '獲取張量中的數據';
ZhHant.MIXLY_TENSORFLOW_SAVE_MODEL = '保存模型';
ZhHant.MIXLY_TENSORFLOW_EXPORT_MODEL = '導出模型';
ZhHant.MIXLY_TENSORFLOW_SAVE_MODEL_NAME = '名稱';
ZhHant.MIXLY_TENSORFLOW_LOAD_MODEL = '使用導入模型';
ZhHant.MIXLY_TENSORFLOW_MODEL_NAME = '模型名';
ZhHant.MIXLY_TENSORFLOW_PREPARE_PICTURE_TO_TENSOR = '預處理圖像為張量';
ZhHant.MIXLY_TENSORFLOW_PREPARE_PICTURE_READ_PICTURE = '讀入圖像';
})();