Pyodide里的Tensorflow目录

可以跑通基本的训练、使用模型过程
This commit is contained in:
RXXXBNUer
2025-10-04 11:24:10 +08:00
parent 57b59e7d33
commit fe343c67ff
30 changed files with 1459 additions and 419 deletions

View File

@@ -1,11 +1,20 @@
<script setup>
// import * as mobilenet from "@tensorflow-models/mobilenet";
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import * as path from 'path';
import { inject, ref } from 'vue';
import { ElMessage, ElButton, ElCard, ElRow, ElCol, ElInput, ElProgress, ElUpload } from 'element-plus';
import { Env } from 'mixly';
import * as tf from "@tensorflow/tfjs";
import * as tfvis from "@tensorflow/tfjs-vis";
import * as path from "path";
import { inject, ref } from "vue";
import {
ElMessage,
ElButton,
ElCard,
ElRow,
ElCol,
ElInput,
ElProgress,
ElUpload,
} from "element-plus";
import { Env } from "mixly";
// import 'element-plus/theme-chalk/el-message.css';
// import 'element-plus/theme-chalk/el-button.css';
@@ -16,459 +25,493 @@ import { Env } from 'mixly';
// import 'element-plus/theme-chalk/el-progress.css';
// import 'element-plus/theme-chalk/el-upload.css';
const emit = defineEmits(['shot'])
const emit = defineEmits(["shot"]);
// 类别及其样本的列表
const picList = inject('picList')
const picList = inject("picList");
// 图片列表
const shotList = inject('shotList')
const shotList = inject("shotList");
// 训练状态
const states = inject('states')
const states = inject("states");
// 用来显示进度条和名称
const classList = ref(
picList.value.map((item, idx) => ({
name: item.title,
progress: 0,
})),
)
const progressColors = ['#FF6F61', '#42A5F5', '#66BB6A', '#FFA726', '#AB47BC']
picList.value.map((item, idx) => ({
name: item.title,
progress: 0,
}))
);
const progressColors = ["#FF6F61", "#42A5F5", "#66BB6A", "#FFA726", "#AB47BC"];
// 用来存储模型
let featureExtractor
let featureExtractor;
// 用来存储损失值
let lossValues = []
let lossValues = [];
// 存储被训练的模型
let model
let model;
// 单击训练按钮后训练模型
async function train() {
// 可视化相关
const visPanel = document.getElementById('vis-left-panel')
if (visPanel)
visPanel.innerHTML = '训练准备中……'
showVisPanel.value = true
console.log('正在加载Mobilenet……')
// net = await mobilenet.load();
featureExtractor = await tf.loadGraphModel(path.join(Env.boardDirPath, 'teachableModel/model.json'))
// 可视化相关
const visPanel = document.getElementById("vis-left-panel");
if (visPanel) visPanel.innerHTML = "训练准备中……";
showVisPanel.value = true;
console.log("正在加载Mobilenet……");
// net = await mobilenet.load();
featureExtractor = await tf.loadGraphModel(
path.join(Env.boardDirPath, "teachableModel/model.json")
);
console.log('Mobilenet加载完成。')
if (visPanel)
visPanel.innerHTML = ''
console.log("Mobilenet加载完成。");
if (visPanel) visPanel.innerHTML = "";
// 准备数据
const NUM_CLASSES = picList.value.length
let xs = null
let ys = null
// 准备模型
model = tf.sequential()
// 添加全连接层
model.add(
tf.layers.dense({
inputShape: [1280],
units: 128,
activation: 'relu',
}),
)
// 添加分类层
model.add(
tf.layers.dense({
units: NUM_CLASSES,
activation: 'softmax',
}),
)
// 编译模型
model.compile({
optimizer: tf.train.adam(0.001),
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
// 准备数据
const NUM_CLASSES = picList.value.length;
let xs = null;
let ys = null;
// 准备模型
model = tf.sequential();
// 添加全连接层
model.add(
tf.layers.dense({
inputShape: [1280],
units: 128,
activation: "relu",
})
for (let classId = 0; classId < picList.value.length; classId++) {
if (picList.value[classId].disabled)
continue
const images = picList.value[classId].list
for (let i = 0; i < images.length; i++) {
// 加载图片
const imgElement = new Image()
imgElement.src = images[i]
await new Promise((resolve) => {
imgElement.onload = resolve
})
// 将图片转化为张量
const imgTensor = tf.browser.fromPixels(imgElement)
// 使用神经网络模型进行推理,获取名为"conv_preds"的卷积层激活值
// let activation = net.infer(imgTensor, "conv_preds");
// 加载特征提取器和你的模型
// 预处理图像并提取特征
const preprocessedImg = imgTensor
.resizeBilinear([224, 224])
.toFloat()
.div(tf.scalar(127.5))
.sub(tf.scalar(1))
.expandDims(0)
const features = featureExtractor.predict(preprocessedImg)
// 将特征输入你的模型
// const predictions = net.predict(features);
let activation = features
// if (activation.shape.length === 3) {
// activation = activation.reshape([1, 1024]);
// }
// let activation = net.predict(imgTensor);
// 检查激活值张量的维度如果是3维张量则进行形状重塑
// 3维形状通常为 [height, width, channels],重塑为 [1, 1024] 的张量
// 为了适配后续分类层或特征可视化的输入要求
// 转换为one-hot编码
const y = tf.oneHot(tf.tensor1d([classId]).toInt(), NUM_CLASSES)
// 初始化xs和ys
if (xs == null) {
xs = activation.clone()
ys = y.clone()
}
else {
const oldXs = xs
xs = oldXs.concat(activation, 0)
oldXs.dispose()
const oldYs = ys
ys = oldYs.concat(y, 0)
oldYs.dispose()
}
y.dispose()
imgTensor.dispose()
}
}
// 训练过程可视化相关
lossValues = []
const metrics = ['loss', 'acc', 'val_loss', 'val_acc', 'accuracy', 'val_accuracy']
const container = document.getElementById('vis-left-panel') || {
name: '训练过程',
tab: '训练',
}
// 训练模型
await model.fit(xs, ys, {
epochs: 20,
batchSize: 16,
shuffle: true,
validationSplit: 0.2,
callbacks: tfvis.show.fitCallbacks(container, metrics, {
callbacks: ['onEpochEnd'],
}),
);
// 添加分类层
model.add(
tf.layers.dense({
units: NUM_CLASSES,
activation: "softmax",
})
console.log('训练完成')
// 与显示进度条相关
classList.value = picList.value
.filter(item => item.disabled !== true)
.map((item, idx) => ({
name: item.title,
progress: 0,
}))
console.log(classList.value)
states.value.isTraining = 2
);
// 编译模型
model.compile({
optimizer: tf.train.adam(0.001),
loss: "categoricalCrossentropy",
metrics: ["accuracy"],
});
for (let classId = 0; classId < picList.value.length; classId++) {
if (picList.value[classId].disabled) continue;
const images = picList.value[classId].list;
for (let i = 0; i < images.length; i++) {
// 加载图片
const imgElement = new Image();
imgElement.src = images[i];
await new Promise((resolve) => {
imgElement.onload = resolve;
});
// 将图片转化为张量
const imgTensor = tf.browser.fromPixels(imgElement);
// 使用神经网络模型进行推理,获取名为"conv_preds"的卷积层激活值
// let activation = net.infer(imgTensor, "conv_preds");
// 加载特征提取器和你的模型
// 预处理图像并提取特征
const preprocessedImg = imgTensor
.resizeBilinear([224, 224])
.toFloat()
.div(tf.scalar(127.5))
.sub(tf.scalar(1))
.expandDims(0);
const features = featureExtractor.predict(preprocessedImg);
// 将特征输入你的模型
// const predictions = net.predict(features);
let activation = features;
// if (activation.shape.length === 3) {
// activation = activation.reshape([1, 1024]);
// }
// let activation = net.predict(imgTensor);
// 检查激活值张量的维度如果是3维张量则进行形状重塑
// 3维形状通常为 [height, width, channels],重塑为 [1, 1024] 的张量
// 为了适配后续分类层或特征可视化的输入要求
// 转换为one-hot编码
const y = tf.oneHot(tf.tensor1d([classId]).toInt(), NUM_CLASSES);
// 初始化xs和ys
if (xs == null) {
xs = activation.clone();
ys = y.clone();
} else {
const oldXs = xs;
xs = oldXs.concat(activation, 0);
oldXs.dispose();
const oldYs = ys;
ys = oldYs.concat(y, 0);
oldYs.dispose();
}
y.dispose();
imgTensor.dispose();
}
}
// 训练过程可视化相关
lossValues = [];
const metrics = ["loss", "acc", "val_loss", "val_acc", "accuracy", "val_accuracy"];
const container = document.getElementById("vis-left-panel") || {
name: "训练过程",
tab: "训练",
};
// 训练模型
await model.fit(xs, ys, {
epochs: 20,
batchSize: 16,
shuffle: true,
validationSplit: 0.2,
callbacks: tfvis.show.fitCallbacks(container, metrics, {
callbacks: ["onEpochEnd"],
}),
});
console.log("训练完成");
// 与显示进度条相关
classList.value = picList.value
.filter((item) => item.disabled !== true)
.map((item, idx) => ({
name: item.title,
progress: 0,
}));
console.log(classList.value);
states.value.isTraining = 2;
}
setInterval(async () => {
// 没训练完成跳过
if (states.value.isTraining !== 2)
return
// 输入是“上传图片”时跳过
if (uploadedImg.value !== '')
return
// 通知摄像头拍摄照片
emit('shot')
// 加载拍摄的照片
const img = shotList.value[shotList.value.length - 1]
if (!img || img === 'data:,') {
ElMessage.error('未获取到有效样本')
return
}
const imgElement = new Image()
imgElement.src = img
await new Promise((resolve) => {
imgElement.onload = resolve
})
// 将图片转换为张量
const imgTensor = tf.browser.fromPixels(imgElement)
// let activation = net.infer(imgTensor, "conv_preds");
let resized = tf.image.resizeBilinear(imgTensor, [224, 224])
let batched = resized.expandDims(0)
let normalized = batched.div(255)
// let activation = net.predict(imgTensor);
let activation = featureExtractor.predict(normalized)
const pred = model.predict(activation)
const predArr = await pred.data()
// console.log(predArr)
classList.value = [
...classList.value.map((item, idx) => ({
...item,
progress: Number((predArr[idx] * 100).toFixed(2)),
})),
]
// console.log(classList.value)
imgTensor.dispose()
activation.dispose()
pred.dispose()
}, 200)
// 没训练完成跳过
if (states.value.isTraining !== 2) return;
// 输入是“上传图片”时跳过
if (uploadedImg.value !== "") return;
// 通知摄像头拍摄照片
emit("shot");
// 加载拍摄照片
const img = shotList.value[shotList.value.length - 1];
if (!img || img === "data:,") {
ElMessage.error("未获取到有效样本");
return;
}
const imgElement = new Image();
imgElement.src = img;
await new Promise((resolve) => {
imgElement.onload = resolve;
});
// 将图片转换为张量
const imgTensor = tf.browser.fromPixels(imgElement);
// let activation = net.infer(imgTensor, "conv_preds");
let resized = tf.image.resizeBilinear(imgTensor, [224, 224]);
let batched = resized.expandDims(0);
let normalized = batched.div(255);
// let activation = net.predict(imgTensor);
let activation = featureExtractor.predict(normalized);
const pred = model.predict(activation);
const predArr = await pred.data();
// console.log(predArr)
classList.value = [
...classList.value.map((item, idx) => ({
...item,
progress: Number((predArr[idx] * 100).toFixed(2)),
})),
];
// console.log(classList.value)
imgTensor.dispose();
activation.dispose();
pred.dispose();
}, 200);
const showVisPanel = ref(false)
const uploadedImg = ref('')
const uploadedResult = ref('')
const panelTop = ref('20%')
const panelRight = ref('20%')
const showVisPanel = ref(false);
const uploadedImg = ref("");
const uploadedResult = ref("");
const panelTop = ref("20%");
const panelRight = ref("20%");
async function exportModel() {
if (!model) {
ElMessage.error('模型尚未训练完成')
return
}
try {
// 导出模型到本地文件系统
await model.save(`downloads://${modelName.value == '' ? 'my-model' : modelName.value}`)
ElMessage.success('模型导出成功')
}
catch (error) {
ElMessage.error(`模型导出失败: ${error.message}`)
}
if (!model) {
ElMessage.error("模型尚未训练完成");
return;
}
try {
// 导出模型到本地文件系统
await model.save(
`downloads://${modelName.value == "" ? "my-model" : modelName.value}`
);
ElMessage.success("模型导出成功");
} catch (error) {
ElMessage.error(`模型导出失败: ${error.message}`);
}
}
async function handleUpload(file) {
const reader = new FileReader()
reader.onload = async (e) => {
uploadedImg.value = e.target.result
if (!featureExtractor || !model) {
ElMessage.error('请先完成模型训练')
return false
}
const imgElement = new window.Image()
imgElement.src = uploadedImg.value
await new Promise(resolve => (imgElement.onload = resolve))
const imgTensor = tf.browser.fromPixels(imgElement)
// let activation = net.infer(imgTensor, "conv_preds");
let resized = tf.image.resizeBilinear(imgTensor, [224, 224])
let batched = resized.expandDims(0)
let normalized = batched.div(255)
// let activation = net.predict(imgTensor);
let activation = featureExtractor.predict(normalized)
const pred = model.predict(activation)
const predArr = await pred.data()
classList.value = [
...classList.value.map((item, idx) => ({
...item,
progress: Number((predArr[idx] * 100).toFixed(2)),
})),
]
const maxIdx = predArr.indexOf(Math.max(...predArr))
uploadedResult.value = classList.value[maxIdx]?.name || '未知'
imgTensor.dispose()
activation.dispose()
pred.dispose()
const reader = new FileReader();
reader.onload = async (e) => {
uploadedImg.value = e.target.result;
if (!featureExtractor || !model) {
ElMessage.error("请先完成模型训练");
return false;
}
reader.readAsDataURL(file)
return false
const imgElement = new window.Image();
imgElement.src = uploadedImg.value;
await new Promise((resolve) => (imgElement.onload = resolve));
const imgTensor = tf.browser.fromPixels(imgElement);
// let activation = net.infer(imgTensor, "conv_preds");
let resized = tf.image.resizeBilinear(imgTensor, [224, 224]);
let batched = resized.expandDims(0);
let normalized = batched.div(255);
// let activation = net.predict(imgTensor);
let activation = featureExtractor.predict(normalized);
const pred = model.predict(activation);
const predArr = await pred.data();
classList.value = [
...classList.value.map((item, idx) => ({
...item,
progress: Number((predArr[idx] * 100).toFixed(2)),
})),
];
const maxIdx = predArr.indexOf(Math.max(...predArr));
uploadedResult.value = classList.value[maxIdx]?.name || "未知";
imgTensor.dispose();
activation.dispose();
pred.dispose();
};
reader.readAsDataURL(file);
return false;
}
function switchToUpload() {
uploadedImg.value = ''
uploadedImg.value = "";
}
let startX = 0
let startY = 0
let startTop = 0
let startRight = 0
let startX = 0;
let startY = 0;
let startTop = 0;
let startRight = 0;
function onDragStart(e) {
if (e.button !== 0)
return
startX = e.clientX
startY = e.clientY
const topVal = document.getElementById('vis-left-panel-wrapper').style.top
const rightVal = document.getElementById('vis-left-panel-wrapper').style.right
startTop = topVal.endsWith('%')
? (window.innerHeight * Number.parseFloat(topVal)) / 100
: Number.parseFloat(topVal)
startRight = rightVal.endsWith('%')
? (window.innerWidth * Number.parseFloat(rightVal)) / 100
: Number.parseFloat(rightVal)
if (e.button !== 0) return;
startX = e.clientX;
startY = e.clientY;
const topVal = document.getElementById("vis-left-panel-wrapper").style.top;
const rightVal = document.getElementById("vis-left-panel-wrapper").style.right;
startTop = topVal.endsWith("%")
? (window.innerHeight * Number.parseFloat(topVal)) / 100
: Number.parseFloat(topVal);
startRight = rightVal.endsWith("%")
? (window.innerWidth * Number.parseFloat(rightVal)) / 100
: Number.parseFloat(rightVal);
document.addEventListener('mousemove', onDragging)
document.addEventListener('mouseup', onDragEnd)
document.addEventListener("mousemove", onDragging);
document.addEventListener("mouseup", onDragEnd);
}
function onDragging(e) {
const deltaX = e.clientX - startX
const deltaY = e.clientY - startY
let newTop = startTop + deltaY
let newRight = startRight - deltaX
newTop = Math.max(0, Math.min(window.innerHeight - 100, newTop))
newRight = Math.max(0, Math.min(window.innerWidth - 200, newRight))
panelTop.value = `${newTop}px`
panelRight.value = `${newRight}px`
const deltaX = e.clientX - startX;
const deltaY = e.clientY - startY;
let newTop = startTop + deltaY;
let newRight = startRight - deltaX;
newTop = Math.max(0, Math.min(window.innerHeight - 100, newTop));
newRight = Math.max(0, Math.min(window.innerWidth - 200, newRight));
panelTop.value = `${newTop}px`;
panelRight.value = `${newRight}px`;
}
function onDragEnd() {
document.removeEventListener('mousemove', onDragging)
document.removeEventListener('mouseup', onDragEnd)
document.removeEventListener("mousemove", onDragging);
document.removeEventListener("mouseup", onDragEnd);
}
defineExpose({ train })
defineExpose({ train });
const modelName = ref('')
const modelName = ref("");
async function saveModel() {
if (!model) {
ElMessage.error('模型尚未训练完成')
return
}
try {
// 导出模型到本地文件系统
await model.save(`indexeddb://${modelName.value == '' ? 'my-model' : modelName.value}`)
ElMessage.success('模型保存成功')
}
catch (error) {
ElMessage.error(`模型保存失败: ${error.message}`)
}
if (!model) {
ElMessage.error("模型尚未训练完成");
return;
}
try {
// 导出模型到本地文件系统
await model.save(
`indexeddb://${modelName.value == "" ? "my-model" : modelName.value}`
);
ElMessage.success("模型保存成功");
} catch (error) {
ElMessage.error(`模型保存失败: ${error.message}`);
}
}
</script>
<template>
<div>
<div v-show="showVisPanel" id="vis-left-panel-wrapper" class="vis-left-panel-wrapper"
:style="`right: ${panelRight}; top: ${panelTop};`">
<div class="vis-left-panel-inner-wrapper">
<div class="vis-left-panel-title" style="" @mousedown="onDragStart">
<span> 训练过程可视化 </span>
<ElButton size="small" plain @click="showVisPanel = false">
隐藏
</ElButton>
</div>
<div id="vis-left-panel" class="vis-left-panel">
训练准备中
</div>
</div>
<div>
<div
v-show="showVisPanel"
id="vis-left-panel-wrapper"
class="vis-left-panel-wrapper"
:style="`right: ${panelRight}; top: ${panelTop};`"
>
<div class="vis-left-panel-inner-wrapper">
<div class="vis-left-panel-title" style="" @mousedown="onDragStart">
<span> 训练过程可视化 </span>
<ElButton size="small" plain @click="showVisPanel = false"> 隐藏 </ElButton>
</div>
<ElCard v-if="states.isTraining === 2" class="model-area">
<template #header>
<div class="card-header">
模型
<ElButton v-if="!showVisPanel" size="small" style="margin-left: 10px" type="primary" plain
@click="showVisPanel = true">
显示训练过程
</ElButton>
<ElButton v-if="states.isTraining === 2" size="small" style="margin-left: 10px" type="success"
plain @click="exportModel">
模型导出至本地
</ElButton>
</div>
</template>
<ElRow class="model-item" style="flex-direction: column; align-items: flex-center">
<ElRow>
<ElCol :span="6" style="display: flex; align-items: center; text-align: right;">
名称
</ElCol>
<ElCol :span="12">
<ElInput v-model="modelName" placeholder="请输入模型名称" />
</ElCol>
<ElCol :span="4" style="display: flex; align-items: center;">
<ElButton style="margin: auto 5px" type="primary" plain size="small" @click="saveModel">
保存
</ElButton>
</ElCol>
</ElRow>
<ElRow class="model-item">
<b>输入</b>
</ElRow>
<div v-if="!uploadedImg" style="margin: auto">
上方拍摄内容
<ElUpload :show-file-list="false" accept="image/*" :before-upload="handleUpload">
<ElButton size="small" type="success">
切换为上传图片
</ElButton>
</ElUpload>
</div>
<div v-else style="margin: auto">
下方上传图片 <br>
<ElButton size="small" type="success" plain @click="switchToUpload">
切换为上方拍摄内容
</ElButton>
<ElUpload :show-file-list="false" accept="image/*" :before-upload="handleUpload">
<ElButton size="small" type="success">
重新上传一张
</ElButton>
</ElUpload>
<img :src="uploadedImg" alt="用户上传图片"
style="max-width: 100%; max-height: 150px; border-radius: 10px">
</div>
</ElRow>
<ElRow class="model-item">
<b>输出</b>
</ElRow>
<ElRow v-for="(item, idx) in classList" :key="`${item.name}-${idx}`" class="model-item">
<ElCol :span="6">
{{ item.name }}
</ElCol>
<ElCol :span="18">
<ElProgress class="progress" :text-inside="true" :stroke-width="20" :percentage="item.progress"
:color="progressColors[idx % progressColors.length]" striped :format="(p) => `${p}%`" />
</ElCol>
</ElRow>
</ElCard>
<div id="vis-left-panel" class="vis-left-panel">训练准备中</div>
</div>
</div>
<ElCard v-if="states.isTraining === 2" class="model-area">
<template #header>
<div class="card-header">
模型
<ElButton
v-if="!showVisPanel"
size="small"
style="margin-left: 10px"
type="primary"
plain
@click="showVisPanel = true"
>
显示训练过程
</ElButton>
<ElButton
v-if="states.isTraining === 2"
size="small"
style="margin-left: 10px"
type="success"
plain
@click="exportModel"
>
模型导出至本地
</ElButton>
</div>
</template>
<ElRow class="model-item" style="flex-direction: column; align-items: flex-center">
<ElRow>
<ElCol :span="6" style="display: flex; align-items: center; text-align: right">
名称
</ElCol>
<ElCol :span="12">
<ElInput v-model="modelName" placeholder="请输入模型名称" />
</ElCol>
<ElCol :span="4" style="display: flex; align-items: center">
<ElButton
style="margin: auto 5px"
type="primary"
plain
size="small"
@click="saveModel"
>
保存
</ElButton>
</ElCol>
</ElRow>
</ElRow>
<ElRow class="model-item">
<b>输入</b>
</ElRow>
<ElRow class="model-item">
<div v-if="!uploadedImg" style="margin: auto">
上方拍摄内容
<ElUpload
:show-file-list="false"
accept="image/*"
:before-upload="handleUpload"
>
<ElButton size="small" type="success"> 切换为上传图片 </ElButton>
</ElUpload>
</div>
<div v-else style="margin: auto">
下方上传图片 <br />
<ElButton size="small" type="success" plain @click="switchToUpload">
切换为上方拍摄内容
</ElButton>
<ElUpload
:show-file-list="false"
accept="image/*"
:before-upload="handleUpload"
>
<ElButton size="small" type="success"> 重新上传一张 </ElButton>
</ElUpload>
<img
:src="uploadedImg"
alt="用户上传图片"
style="max-width: 100%; max-height: 150px; border-radius: 10px"
/>
</div>
</ElRow>
<ElRow class="model-item">
<b>输出</b>
</ElRow>
<ElRow
v-for="(item, idx) in classList"
:key="`${item.name}-${idx}`"
class="model-item"
>
<ElCol :span="6">
{{ item.name }}
</ElCol>
<ElCol :span="18">
<ElProgress
class="progress"
:text-inside="true"
:stroke-width="20"
:percentage="item.progress"
:color="progressColors[idx % progressColors.length]"
striped
:format="(p) => `${p}%`"
/>
</ElCol>
</ElRow>
</ElCard>
</div>
</template>
<style scoped>
.vis-left-panel-wrapper {
transition: all 0.3s;
position: fixed;
width: 400px;
z-index: 1000;
box-shadow: 0 0 20px #0001;
transition: all 0.3s;
position: fixed;
width: 400px;
z-index: 1000;
box-shadow: 0 0 20px #0001;
}
.vis-left-panel-inner-wrapper {
background: #fff;
border-radius: 10px;
box-shadow: 0 2px 8px #0001;
padding: 10px 10px 0 10px;
border: 1px solid #eee;
background: #fff;
border-radius: 10px;
box-shadow: 0 2px 8px #0001;
padding: 10px 10px 0 10px;
border: 1px solid #eee;
}
.vis-left-panel-title {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 8px;
cursor: move;
user-select: none;
font-weight: bold;
font-size: 16px;
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 8px;
cursor: move;
user-select: none;
font-weight: bold;
font-size: 16px;
}
.vis-left-panel {
min-height: 300px;
min-height: 300px;
}
.model-area {
margin: 10px auto;
width: 85%;
max-width: 300px;
border-radius: 30px;
margin: 10px auto;
width: 85%;
max-width: 300px;
border-radius: 30px;
}
.card-header {
display: flex;
justify-content: space-between;
align-items: center;
height: 10px;
display: flex;
justify-content: space-between;
align-items: center;
height: 10px;
}
.model-item {
display: flex;
align-items: center;
margin-bottom: 15px;
display: flex;
align-items: center;
margin-bottom: 15px;
}
</style>