增加“机器学习”和“数据分析”的块
This commit is contained in:
@@ -519,8 +519,7 @@ export const pandas_drop_columns = function (block, generator) {
|
||||
generator.definitions_.import_pandas = "import pandas";
|
||||
var dataframe = generator.valueToCode(block, 'DATAFRAME', generator.ORDER_ATOMIC) || 'df';
|
||||
var columns = generator.valueToCode(block, 'COLUMNS', generator.ORDER_ATOMIC) || '[]';
|
||||
var axis = block.getFieldValue('AXIS') || '0';
|
||||
var code = dataframe + '.drop(columns=' + columns + ', axis=' + axis + ')';
|
||||
var code = dataframe + '.drop(columns=' + columns + ', axis=1)';
|
||||
return [code, generator.ORDER_ATOMIC];
|
||||
}
|
||||
|
||||
|
||||
@@ -147,18 +147,40 @@ export const sklearn_GaussianNB = function (_, generator) {
|
||||
return code;
|
||||
}
|
||||
|
||||
// sklearn 初始化PCA降维
|
||||
export const sklearn_pca = function (_, generator) {
|
||||
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'pca';
|
||||
var value_n_components = generator.valueToCode(this, 'n_components', generator.ORDER_ATOMIC) || '2';
|
||||
generator.definitions_['import_sklearn_pca'] = 'from sklearn.decomposition import PCA';
|
||||
var code = value_model_name + ' = PCA(n_components=' + value_n_components + ')\n';
|
||||
return code;
|
||||
}
|
||||
|
||||
export const sklearn_pca_fit_transform = function(block, generator) {
|
||||
var value_model_name = generator.valueToCode(block, 'model_name', generator.ORDER_ATOMIC);
|
||||
var value_train_data = generator.valueToCode(block, 'train_data', generator.ORDER_ATOMIC);
|
||||
var code = value_model_name + '.fit_transform(' + value_train_data + ')';
|
||||
return [code, generator.ORDER_ATOMIC];
|
||||
};
|
||||
|
||||
// sklearn 初始K-均值聚类
|
||||
export const sklearn_KMeans = function (_, generator) {
|
||||
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'model';
|
||||
var value_n_clusters = generator.valueToCode(this, 'n_clusters', generator.ORDER_ATOMIC) || '8';
|
||||
var value_max_iter = generator.valueToCode(this, 'max_iter', generator.ORDER_ATOMIC) || '300';
|
||||
var value_random_state = generator.valueToCode(this, 'random_state', generator.ORDER_ATOMIC) || 'None';
|
||||
var value_n_jobs = generator.valueToCode(this, 'n_jobs', generator.ORDER_ATOMIC) || 'None';
|
||||
generator.definitions_['import_sklearn_KMeans'] = 'from sklearn.cluster import KMeans';
|
||||
var code = value_model_name + ' = KMeans(n_clusters = ' + value_n_clusters + ',max_iter = ' + value_max_iter + ',random_state = ' + value_random_state + ',n_jobs = ' + value_n_jobs + ')\n';
|
||||
var code = value_model_name + ' = KMeans(n_clusters = ' + value_n_clusters + ',max_iter = ' + value_max_iter + ',random_state = ' + value_random_state + ')\n';
|
||||
return code;
|
||||
}
|
||||
|
||||
export const sklearn_KMeans_fit = function(block, generator) {
|
||||
var value_model_name = generator.valueToCode(block, 'model_name', generator.ORDER_ATOMIC);
|
||||
var value_train_data = generator.valueToCode(block, 'train_data', generator.ORDER_ATOMIC);
|
||||
var code = value_model_name + '.fit(' + value_train_data + ')\n';
|
||||
return code;
|
||||
};
|
||||
|
||||
// sklearn 训练模型
|
||||
export const sklearn_fit = function (_, generator) {
|
||||
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'model';
|
||||
|
||||
Reference in New Issue
Block a user