增加“机器学习”和“数据分析”的块

This commit is contained in:
13880560530
2024-11-29 08:53:29 +08:00
parent 28552b0a22
commit ead77c4b89
8 changed files with 141 additions and 28 deletions

View File

@@ -519,8 +519,7 @@ export const pandas_drop_columns = function (block, generator) {
generator.definitions_.import_pandas = "import pandas";
var dataframe = generator.valueToCode(block, 'DATAFRAME', generator.ORDER_ATOMIC) || 'df';
var columns = generator.valueToCode(block, 'COLUMNS', generator.ORDER_ATOMIC) || '[]';
var axis = block.getFieldValue('AXIS') || '0';
var code = dataframe + '.drop(columns=' + columns + ', axis=' + axis + ')';
var code = dataframe + '.drop(columns=' + columns + ', axis=1)';
return [code, generator.ORDER_ATOMIC];
}

View File

@@ -147,18 +147,40 @@ export const sklearn_GaussianNB = function (_, generator) {
return code;
}
// sklearn 初始化PCA降维
export const sklearn_pca = function (_, generator) {
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'pca';
var value_n_components = generator.valueToCode(this, 'n_components', generator.ORDER_ATOMIC) || '2';
generator.definitions_['import_sklearn_pca'] = 'from sklearn.decomposition import PCA';
var code = value_model_name + ' = PCA(n_components=' + value_n_components + ')\n';
return code;
}
export const sklearn_pca_fit_transform = function(block, generator) {
var value_model_name = generator.valueToCode(block, 'model_name', generator.ORDER_ATOMIC);
var value_train_data = generator.valueToCode(block, 'train_data', generator.ORDER_ATOMIC);
var code = value_model_name + '.fit_transform(' + value_train_data + ')';
return [code, generator.ORDER_ATOMIC];
};
// sklearn 初始K-均值聚类
export const sklearn_KMeans = function (_, generator) {
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'model';
var value_n_clusters = generator.valueToCode(this, 'n_clusters', generator.ORDER_ATOMIC) || '8';
var value_max_iter = generator.valueToCode(this, 'max_iter', generator.ORDER_ATOMIC) || '300';
var value_random_state = generator.valueToCode(this, 'random_state', generator.ORDER_ATOMIC) || 'None';
var value_n_jobs = generator.valueToCode(this, 'n_jobs', generator.ORDER_ATOMIC) || 'None';
generator.definitions_['import_sklearn_KMeans'] = 'from sklearn.cluster import KMeans';
var code = value_model_name + ' = KMeans(n_clusters = ' + value_n_clusters + ',max_iter = ' + value_max_iter + ',random_state = ' + value_random_state + ',n_jobs = ' + value_n_jobs + ')\n';
var code = value_model_name + ' = KMeans(n_clusters = ' + value_n_clusters + ',max_iter = ' + value_max_iter + ',random_state = ' + value_random_state + ')\n';
return code;
}
export const sklearn_KMeans_fit = function(block, generator) {
var value_model_name = generator.valueToCode(block, 'model_name', generator.ORDER_ATOMIC);
var value_train_data = generator.valueToCode(block, 'train_data', generator.ORDER_ATOMIC);
var code = value_model_name + '.fit(' + value_train_data + ')\n';
return code;
};
// sklearn 训练模型
export const sklearn_fit = function (_, generator) {
var value_model_name = generator.valueToCode(this, 'model_name', generator.ORDER_ATOMIC) || 'model';