增加“机器学习”和“数据分析”的块
This commit is contained in:
@@ -1247,16 +1247,12 @@ export const pandas_drop_columns = {
|
||||
this.appendValueInput('DATAFRAME')
|
||||
.appendField('从数据集');
|
||||
this.appendValueInput('COLUMNS')
|
||||
.appendField('中删除列');
|
||||
this.appendDummyInput()
|
||||
.appendField('沿着axis')
|
||||
.appendField(new Blockly.FieldDropdown([
|
||||
['行', '0'],
|
||||
['列', '1']
|
||||
]), 'AXIS');
|
||||
.appendField('中删除列')
|
||||
.setCheck(String);
|
||||
this.setInputsInline(true);
|
||||
this.setOutput(true);
|
||||
this.setTooltip('Drops columns from dataframe.');
|
||||
}
|
||||
this.setTooltip('从数据框中删除指定的列。用逗号分隔多个列名。');
|
||||
},
|
||||
};
|
||||
|
||||
export const numpy_ones = {
|
||||
|
||||
@@ -405,6 +405,49 @@ export const sklearn_GaussianNB = {
|
||||
}
|
||||
};
|
||||
|
||||
//sklearn 初始化PCA降维
|
||||
export const sklearn_pca = {
|
||||
init: function () {
|
||||
this.appendDummyInput()
|
||||
.appendField("sklearn 初始化 PCA 算法");
|
||||
this.appendValueInput("model_name")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.MODEL_NAME);
|
||||
this.appendValueInput("n_components")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.SKLEARN_PCA_N_COMPONENTS);
|
||||
this.setInputsInline(false);
|
||||
this.setPreviousStatement(true, null);
|
||||
this.setNextStatement(true, null);
|
||||
this.setColour(SKLEARN_HUE);
|
||||
this.setTooltip("");
|
||||
this.setHelpUrl("");
|
||||
}
|
||||
};
|
||||
|
||||
//sklearn PCA拟合并转换数据
|
||||
export const sklearn_pca_fit_transform = {
|
||||
init: function () {
|
||||
this.appendDummyInput()
|
||||
.appendField("sklearn PCA 降维");
|
||||
this.appendValueInput("model_name")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.MODEL_NAME);
|
||||
this.appendValueInput("train_data")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.EIGENVALUES);
|
||||
this.setInputsInline(true);
|
||||
this.setOutput(true, null);
|
||||
this.setColour(SKLEARN_HUE);
|
||||
this.setTooltip("");
|
||||
this.setHelpUrl("");
|
||||
}
|
||||
};
|
||||
|
||||
//sklearn 初始化K-均值聚类
|
||||
export const sklearn_KMeans = {
|
||||
init: function () {
|
||||
@@ -426,11 +469,29 @@ export const sklearn_KMeans = {
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.RANDOM_SEED);
|
||||
this.appendValueInput("n_jobs")
|
||||
this.setInputsInline(false);
|
||||
this.setPreviousStatement(true, null);
|
||||
this.setNextStatement(true, null);
|
||||
this.setColour(SKLEARN_HUE);
|
||||
this.setTooltip("");
|
||||
this.setHelpUrl("");
|
||||
}
|
||||
};
|
||||
|
||||
//sklearn KMeans拟合数据
|
||||
export const sklearn_KMeans_fit = {
|
||||
init: function () {
|
||||
this.appendDummyInput()
|
||||
.appendField("sklearn K-均值聚类");
|
||||
this.appendValueInput("model_name")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.SKLEARN_THREADS);
|
||||
this.setInputsInline(false);
|
||||
.appendField(Blockly.Msg.MODEL_NAME);
|
||||
this.appendValueInput("train_data")
|
||||
.setCheck(null)
|
||||
.setAlign(Blockly.inputs.Align.RIGHT)
|
||||
.appendField(Blockly.Msg.EIGENVALUES);
|
||||
this.setInputsInline(true);
|
||||
this.setPreviousStatement(true, null);
|
||||
this.setNextStatement(true, null);
|
||||
this.setColour(SKLEARN_HUE);
|
||||
|
||||
Reference in New Issue
Block a user