Files
mixly3-server/arduino-libs/arduino-cli/libraries/Seeed_Arduino_LIS3DHTR/src/LIS3DHTR.cpp

490 lines
14 KiB
C++

/*
* A library for Grove - 3-Axis Digital Accelerometer ±2g to 16g Ultra-low Power(LIS3DHTR)
*
* Copyright (c) 2019 seeed technology co., ltd.
* Author : Hongtai Liu (lht856@foxmail.com)
* Create Time : July 2019
* Change Log :
*
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software istm
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INcommInterface
* THE SOFTWARE.
*/
#include "LIS3DHTR.h"
template <class T>
LIS3DHTR<T>::LIS3DHTR()
{
}
template <class T>
void LIS3DHTR<T>::begin(SPIClass &comm, uint8_t sspin)
{
chipSelectPin = sspin;
_spi_com = &comm;
_wire_com = NULL;
pinMode(chipSelectPin, OUTPUT);
digitalWrite(chipSelectPin, HIGH);
// start the SPI library:
_spi_com->begin();
// Maximum SPI frequency is 10MHz, could divide by 2 here:
_spi_com->setClockDivider(SPI_CLOCK_DIV4);
// Data is read and written MSb first.
_spi_com->setBitOrder(MSBFIRST);
// Data is captured on rising edge of clock (CPHA = 0)
// Base value of the clock is HIGH (CPOL = 1)
// MODE3 for 328p operation
_spi_com->setDataMode(SPI_MODE3);
delay(200);
uint8_t config5 = LIS3DHTR_REG_TEMP_ADC_PD_ENABLED |
LIS3DHTR_REG_TEMP_TEMP_EN_DISABLED;
writeRegister(LIS3DHTR_REG_TEMP_CFG, config5);
delay(LIS3DHTR_CONVERSIONDELAY);
uint8_t config1 = LIS3DHTR_REG_ACCEL_CTRL_REG1_LPEN_NORMAL | // Normal Mode
LIS3DHTR_REG_ACCEL_CTRL_REG1_AZEN_ENABLE | // Acceleration Z-Axis Enabled
LIS3DHTR_REG_ACCEL_CTRL_REG1_AYEN_ENABLE | // Acceleration Y-Axis Enabled
LIS3DHTR_REG_ACCEL_CTRL_REG1_AXEN_ENABLE;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1, config1);
delay(LIS3DHTR_CONVERSIONDELAY);
uint8_t config4 = LIS3DHTR_REG_ACCEL_CTRL_REG4_BDU_NOTUPDATED | // Continuous Update
LIS3DHTR_REG_ACCEL_CTRL_REG4_BLE_LSB | // Data LSB @ lower address
LIS3DHTR_REG_ACCEL_CTRL_REG4_HS_DISABLE | // High Resolution Disable
LIS3DHTR_REG_ACCEL_CTRL_REG4_ST_NORMAL | // Normal Mode
LIS3DHTR_REG_ACCEL_CTRL_REG4_SIM_4WIRE; // 4-Wire Interface
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4, config4);
delay(LIS3DHTR_CONVERSIONDELAY);
setFullScaleRange(LIS3DHTR_RANGE_16G);
setOutputDataRate(LIS3DHTR_DATARATE_400HZ);
}
template <class T>
void LIS3DHTR<T>::begin(TwoWire &wire, uint8_t address)
{
_wire_com = &wire;
_wire_com->begin();
_spi_com = NULL;
devAddr = address;
uint8_t config5 = LIS3DHTR_REG_TEMP_ADC_PD_ENABLED |
LIS3DHTR_REG_TEMP_TEMP_EN_DISABLED;
writeRegister(LIS3DHTR_REG_TEMP_CFG, config5);
delay(LIS3DHTR_CONVERSIONDELAY);
uint8_t config1 = LIS3DHTR_REG_ACCEL_CTRL_REG1_LPEN_NORMAL | // Normal Mode
LIS3DHTR_REG_ACCEL_CTRL_REG1_AZEN_ENABLE | // Acceleration Z-Axis Enabled
LIS3DHTR_REG_ACCEL_CTRL_REG1_AYEN_ENABLE | // Acceleration Y-Axis Enabled
LIS3DHTR_REG_ACCEL_CTRL_REG1_AXEN_ENABLE;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1, config1);
delay(LIS3DHTR_CONVERSIONDELAY);
uint8_t config4 = LIS3DHTR_REG_ACCEL_CTRL_REG4_BDU_NOTUPDATED | // Continuous Update
LIS3DHTR_REG_ACCEL_CTRL_REG4_BLE_LSB | // Data LSB @ lower address
LIS3DHTR_REG_ACCEL_CTRL_REG4_HS_DISABLE | // High Resolution Disable
LIS3DHTR_REG_ACCEL_CTRL_REG4_ST_NORMAL | // Normal Mode
LIS3DHTR_REG_ACCEL_CTRL_REG4_SIM_4WIRE; // 4-Wire Interface
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4, config4);
delay(LIS3DHTR_CONVERSIONDELAY);
setFullScaleRange(LIS3DHTR_RANGE_16G);
setOutputDataRate(LIS3DHTR_DATARATE_400HZ);
}
template<class T>
bool LIS3DHTR<T>::available()
{
uint8_t status = 0;
status = readRegister(LIS3DHTR_REG_ACCEL_STATUS2);
status &= LIS3DHTR_REG_ACCEL_STATUS2_UPDATE_MASK;
return status;
}
template <class T>
void LIS3DHTR<T>::openTemp()
{
uint8_t config5 = LIS3DHTR_REG_TEMP_ADC_PD_ENABLED |
LIS3DHTR_REG_TEMP_TEMP_EN_ENABLED;
writeRegister(LIS3DHTR_REG_TEMP_CFG, config5);
delay(LIS3DHTR_CONVERSIONDELAY);
}
template <class T>
void LIS3DHTR<T>::closeTemp()
{
uint8_t config5 = LIS3DHTR_REG_TEMP_ADC_PD_ENABLED |
LIS3DHTR_REG_TEMP_TEMP_EN_DISABLED;
writeRegister(LIS3DHTR_REG_TEMP_CFG, config5);
delay(LIS3DHTR_CONVERSIONDELAY);
}
template <class T>
int16_t LIS3DHTR<T>::getTemperature(void)
{
int16_t result = ((int16_t)readRegisterInt16(0x0c)) / 256;
result += 25;
return result;
}
template <class T>
bool LIS3DHTR<T>::isConnection(void)
{
return (getDeviceID() == 0x33);
}
template <class T>
uint8_t LIS3DHTR<T>::getDeviceID(void)
{
return readRegister(LIS3DHTR_REG_ACCEL_WHO_AM_I);
}
template <class T>
void LIS3DHTR<T>::setPowerMode(power_type_t mode)
{
uint8_t data = 0;
data = readRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1);
data &= ~LIS3DHTR_REG_ACCEL_CTRL_REG1_LPEN_MASK;
data |= mode;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1, data);
delay(LIS3DHTR_CONVERSIONDELAY);
}
template <class T>
void LIS3DHTR<T>::setFullScaleRange(scale_type_t range)
{
uint8_t data = 0;
data = readRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4);
data &= ~LIS3DHTR_REG_ACCEL_CTRL_REG4_FS_MASK;
data |= range;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4, data);
delay(LIS3DHTR_CONVERSIONDELAY);
switch (range)
{
case LIS3DHTR_REG_ACCEL_CTRL_REG4_FS_16G:
accRange = 1280;
break;
case LIS3DHTR_REG_ACCEL_CTRL_REG4_FS_8G:
accRange = 3968;
break;
case LIS3DHTR_REG_ACCEL_CTRL_REG4_FS_4G:
accRange = 7282;
break;
case LIS3DHTR_REG_ACCEL_CTRL_REG4_FS_2G:
accRange = 16000;
break;
default:
break;
}
}
template <class T>
void LIS3DHTR<T>::setOutputDataRate(odr_type_t odr)
{
uint8_t data = 0;
data = readRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1);
data &= ~LIS3DHTR_REG_ACCEL_CTRL_REG1_AODR_MASK;
data |= odr;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG1, data);
delay(LIS3DHTR_CONVERSIONDELAY);
}
template <class T>
void LIS3DHTR<T>::getAcceleration(float *x, float *y, float *z)
{
// Read the Accelerometer
uint8_t xAccelLo, xAccelHi, yAccelLo, yAccelHi, zAccelLo, zAccelHi;
// Read the Data
// Reading the Low X-Axis Acceleration Data Register
xAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_X_L);
// Reading the High X-Axis Acceleration Data Register
xAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_X_H);
// Conversion of the result
// 16-bit signed result for X-Axis Acceleration Data of LIS3DHTR
*x = (float)((int16_t)((xAccelHi << 8) | xAccelLo)) / accRange;
// Reading the Low Y-Axis Acceleration Data Register
yAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_Y_L);
// Reading the High Y-Axis Acceleration Data Register
yAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_Y_H);
// Conversion of the result
// 16-bit signed result for Y-Axis Acceleration Data of LIS3DHTR
*y = (float)((int16_t)((yAccelHi << 8) | yAccelLo)) / accRange;
// Reading the Low Z-Axis Acceleration Data Register
zAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_Z_L);
// Reading the High Z-Axis Acceleration Data Register
zAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_Z_H);
// Conversion of the result
// 16-bit signed result for Z-Axis Acceleration Data of LIS3DHTR
*z = (float)((int16_t)((zAccelHi << 8)) | zAccelLo) / accRange;
}
template <class T>
float LIS3DHTR<T>::getAccelerationX(void)
{
// Read the Accelerometer
uint8_t xAccelLo, xAccelHi;
int16_t x;
// Read the Data
// Reading the Low X-Axis Acceleration Data Register
xAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_X_L);
// Reading the High X-Axis Acceleration Data Register
xAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_X_H);
// Conversion of the result
// 16-bit signed result for X-Axis Acceleration Data of LIS3DHTR
x = (int16_t)((xAccelHi << 8) | xAccelLo);
return (float)x / accRange;
}
template <class T>
float LIS3DHTR<T>::getAccelerationY(void)
{
// Read the Accelerometer
uint8_t yAccelLo, yAccelHi;
int16_t y;
// Reading the Low Y-Axis Acceleration Data Register
yAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_Y_L);
// Reading the High Y-Axis Acceleration Data Register
yAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_Y_H);
// Conversion of the result
// 16-bit signed result for Y-Axis Acceleration Data of LIS3DHTR
y = (int16_t)((yAccelHi << 8) | yAccelLo);
return (float)y / accRange;
}
template <class T>
float LIS3DHTR<T>::getAccelerationZ(void)
{
// Read the Accelerometer
uint8_t zAccelLo, zAccelHi;
int16_t z;
// Reading the Low Z-Axis Acceleration Data Register
zAccelLo = readRegister(LIS3DHTR_REG_ACCEL_OUT_Z_L);
// Reading the High Z-Axis Acceleration Data Register
zAccelHi = readRegister(LIS3DHTR_REG_ACCEL_OUT_Z_H);
// Conversion of the result
// 16-bit signed result for Z-Axis Acceleration Data of LIS3DHTR
z = (int16_t)((zAccelHi << 8) | zAccelLo);
return (float)z / accRange;
}
template <class T>
void LIS3DHTR<T>::setHighSolution(bool enable)
{
uint8_t data = 0;
data = readRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4);
data = enable? data | LIS3DHTR_REG_ACCEL_CTRL_REG4_HS_ENABLE : data & ~LIS3DHTR_REG_ACCEL_CTRL_REG4_HS_ENABLE;
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG4, data);
return;
}
template <class T>
uint16_t LIS3DHTR<T>::readbitADC1(void)
{
uint8_t adc1_l, adc1_h;
int16_t intTemp;
uint16_t uintTemp;
adc1_l = readRegister(0x08);
adc1_h = readRegister(0x09);
intTemp = (int16_t)(adc1_h << 8) | adc1_l;
intTemp = 0 - intTemp;
uintTemp = intTemp + 32768;
return uintTemp >> 6;
}
template <class T>
uint16_t LIS3DHTR<T>::readbitADC2(void)
{
uint8_t adc2_l, adc2_h;
int16_t intTemp;
uint16_t uintTemp;
adc2_l = readRegister(0x0A);
adc2_h = readRegister(0x0B);
intTemp = (int16_t)(adc2_h << 8) | adc2_l;
intTemp = 0 - intTemp;
uintTemp = intTemp + 32768;
return uintTemp >> 6;
}
template <class T>
uint16_t LIS3DHTR<T>::readbitADC3(void)
{
uint8_t adc3_l, adc3_h;
int16_t intTemp;
uint16_t uintTemp;
adc3_l = readRegister(0x0C);
adc3_h = readRegister(0x0D);
intTemp = (int16_t)(adc3_h << 8) | adc3_l;
intTemp = 0 - intTemp;
uintTemp = intTemp + 32768;
return uintTemp >> 6;
}
template <class T>
void LIS3DHTR<T>::writeRegister(uint8_t reg, uint8_t val)
{
if (_spi_com != NULL)
{
digitalWrite(chipSelectPin, LOW);
_spi_com->transfer(reg);
_spi_com->transfer(val);
digitalWrite(chipSelectPin, HIGH);
}
else
{
_wire_com->beginTransmission(devAddr);
_wire_com->write(reg);
_wire_com->write(val);
_wire_com->endTransmission();
}
}
template <class T>
void LIS3DHTR<T>::readRegisterRegion(uint8_t *outputPointer, uint8_t reg, uint8_t length)
{
//define pointer that will point to the external space
uint8_t i = 0;
uint8_t c = 0;
uint8_t tempFFCounter = 0;
if (_spi_com != NULL)
{
digitalWrite(chipSelectPin, LOW);
_spi_com->transfer(reg | 0x80 | 0x40); //Ored with "read request" bit and "auto increment" bit
while (i < length) // slave may send less than requested
{
c = _spi_com->transfer(0x00); // receive a byte as character
*outputPointer = c;
outputPointer++;
i++;
}
digitalWrite(chipSelectPin, HIGH);
}
else
{
_wire_com->beginTransmission(devAddr);
reg |= 0x80; //turn auto-increment bit on, bit 7 for I2C
_wire_com->write(reg);
_wire_com->endTransmission();
_wire_com->requestFrom(devAddr, length);
while ((_wire_com->available()) && (i < length)) // slave may send less than requested
{
c = _wire_com->read(); // receive a byte as character
*outputPointer = c;
outputPointer++;
i++;
}
}
}
template <class T>
uint16_t LIS3DHTR<T>::readRegisterInt16(uint8_t reg)
{
uint8_t myBuffer[2];
readRegisterRegion(myBuffer, reg, 2);
uint16_t output = myBuffer[0] | uint16_t(myBuffer[1] << 8);
return output;
}
template <class T>
uint8_t LIS3DHTR<T>::readRegister(uint8_t reg)
{
uint8_t data;
readRegisterRegion(&data, reg, 1);
return data;
}
template <class T>
void LIS3DHTR<T>::click(uint8_t c, uint8_t click_thresh, uint8_t limit, uint8_t latency, uint8_t window)
{
if (!c)
{
uint8_t r = readRegister(LIS3DHTR_REG_ACCEL_CTRL_REG3);
r &= ~(0x80); // turn off I1_CLICK
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG3, r);
writeRegister(LIS3DHTR_REG_ACCEL_CLICK_CFG, 0);
return;
}
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG3, 0x80);
writeRegister(LIS3DHTR_REG_ACCEL_CTRL_REG5, 0x08);
if (c == 1)
{
writeRegister(LIS3DHTR_REG_ACCEL_CLICK_CFG, 0x15);
}
if (c == 2)
{
writeRegister(LIS3DHTR_REG_ACCEL_CLICK_CFG, 0x2A);
}
writeRegister(LIS3DHTR_REG_ACCEL_CLICK_THS, click_thresh);
writeRegister(LIS3DHTR_REG_ACCEL_TIME_LIMIT, limit);
writeRegister(LIS3DHTR_REG_ACCEL_TIME_LATENCY, latency);
writeRegister(LIS3DHTR_REG_ACCEL_TIME_WINDOW, window);
}
template <class T>
LIS3DHTR<T>::operator bool() { return isConnection(); }
template class LIS3DHTR<SPIClass>;
template class LIS3DHTR<TwoWire>;