/* TMRh20 2014 - Updated to work with optimized RF24 Arduino library */ /** * Example for efficient call-response using ack-payloads * * This example continues to make use of all the normal functionality of the radios including * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well. * This allows very fast call-response communication, with the responding radio never having to * switch out of Primary Receiver mode to send back a payload, but having the option to switch to * primary transmitter if wanting to initiate communication instead of respond to a commmunication. */ #include #include #include #include #include #include using namespace std; // // Hardware configuration // Configure the appropriate pins for your connections /****************** Linux ***********************/ // Radio CE Pin, CSN Pin, SPI Speed // CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering // CS Pin addresses the SPI bus number at /dev/spidev. // ie: RF24 radio(, *10+); spidev1.0 is 10, spidev1.1 is 11 etc.. // Generic: RF24 radio(22,0); /****************** Linux (BBB,x86,etc) ***********************/ // See http://tmrh20.github.io/RF24/pages.html for more information on usage // See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA // See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV /********** User Config *********/ // Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default. bool radioNumber = 1; /********************************/ // Radio pipe addresses for the 2 nodes to communicate. const uint8_t addresses[][6] = {"1Node", "2Node"}; bool role_ping_out = 1, role_pong_back = 0, role = 0; uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth int main(int argc, char** argv) { cout << "RPi/RF24/examples/gettingstarted_call_response\n"; radio.begin(); radio.enableAckPayload(); // Allow optional ack payloads radio.enableDynamicPayloads(); radio.printDetails(); // Dump the configuration of the rf unit for debugging /********* Role chooser ***********/ printf("\n ************ Role Setup ***********\n"); string input = ""; char myChar = {0}; cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>"; getline(cin, input); if (input.length() == 1) { myChar = input[0]; if (myChar == '0') { cout << "Role: Pong Back, awaiting transmission " << endl << endl; } else { cout << "Role: Ping Out, starting transmission " << endl << endl; role = role_ping_out; } } /***********************************/ // This opens two pipes for these two nodes to communicate // back and forth. if (!radioNumber) { radio.openWritingPipe(addresses[0]); radio.openReadingPipe(1, addresses[1]); } else { radio.openWritingPipe(addresses[1]); radio.openReadingPipe(1, addresses[0]); } radio.startListening(); radio.writeAckPayload(1, &counter, 1); // forever loop while (1) { /****************** Ping Out Role ***************************/ if (role == role_ping_out) { // Radio is in ping mode uint8_t gotByte; // Initialize a variable for the incoming response radio.stopListening(); // First, stop listening so we can talk. printf("Now sending %d as payload. ", counter); // Use a simple byte counter as payload unsigned long time = millis(); // Record the current microsecond count if (radio.write(&counter, 1)) { // Send the counter variable to the other radio if (!radio.available()) { // If nothing in the buffer, we got an ack but it is blank printf("Got blank response. round-trip delay: %lu ms\n\r", millis() - time); } else { while (radio.available()) { // If an ack with payload was received radio.read(&gotByte, 1); // Read it, and display the response time printf("Got response %d, round-trip delay: %lu ms\n\r", gotByte, millis() - time); counter++; // Increment the counter variable } } } else { printf("Sending failed.\n\r"); } // If no ack response, sending failed sleep(1); // Try again later } /****************** Pong Back Role ***************************/ if (role == role_pong_back) { uint8_t pipeNo, gotByte; // Declare variables for the pipe and the byte received if (radio.available(&pipeNo)) { // Read all available payloads radio.read(&gotByte, 1); // Since this is a call-response. Respond directly with an ack payload. gotByte += 1; // Ack payloads are much more efficient than switching to transmit mode to respond to a call radio.writeAckPayload(pipeNo, &gotByte, 1); // This can be commented out to send empty payloads. printf("Loaded next response %d \n\r", gotByte); delay(900); //Delay after a response to minimize CPU usage on RPi //Expects a payload every second } } } //while 1 } //main