feat: sync all micropython board configurations and scripts

This commit is contained in:
yczpf2019
2026-01-24 16:14:43 +08:00
parent c6dc5537f0
commit 6dce82e125
2066 changed files with 113326 additions and 0 deletions

View File

@@ -0,0 +1,117 @@
"""
Camera
MicroPython library for the Camera(Inherit C module)
=======================================================
@dahanzimin From the Mixly Team
"""
import time, gc
import urequests
from _camera import *
from base64 import b64encode
from machine import SoftI2C, Pin
from jpeg import Encoder, Decoder
class IMG:
def __init__(self, image, width, height):
self.image = image
self.width = width
self.height = height
self.format = "RGB565"
class Camera(Camera):
def __init__(self, frame_size=FrameSize.R240X240, pixel_format=PixelFormat.RGB565, skip_frame=3, hmirror=False, vflip=False, **kwargs):
from mixgo_sant import onboard_bot
onboard_bot.cam_reset(1, 0)
onboard_bot.cam_en(1, 150)
super().__init__(frame_size=frame_size, pixel_format=pixel_format, **kwargs)
self.set_hmirror(not hmirror)
time.sleep_ms(150)
self.set_vflip(not vflip)
SoftI2C(scl=Pin(47), sda=Pin(48), freq=400000) # 恢复I2C
for _ in range(skip_frame):
super().capture()
def deinit(self):
super().deinit()
gc.collect()
onboard_bot.cam_reset(0, 0)
onboard_bot.cam_en(0, 100)
def snapshot(self, path=None, quality=90, rotation=0):
if path is None:
return self.capture()
else:
Image.save(self.capture(), path, quality=quality, rotation=rotation)
def capture(self):
return IMG(super().capture(), self.get_pixel_width(), self.get_pixel_height())
class Image:
def save(self, img, path="mixly.jpg", **kwargs):
'''quality(1-100), rotation (0, 90, 180, 270)'''
_encoder = Encoder(pixel_format="RGB565_BE", width=img.width, height=img.height, **kwargs)
_jpeg = _encoder.encode(img.image)
del _encoder
gc.collect()
if isinstance(path, str):
with open(path, 'wb') as f:
f.write(_jpeg)
else:
return _jpeg
def open(self, path="mixly.jpg", scale_width=None, scale_height=None, tft_width=240, tft_height=240, **kwargs):
'''rotation (0, 90, 180, 270), clipper_width, clipper_height'''
with open(path, "rb") as f:
_jpeg = f.read()
return self._jpg_decoder(_jpeg, scale_width, scale_height, tft_width, tft_height, **kwargs)
def convert(self, img, formats=0, **kwargs):
if formats == 0:
return self.save(img, None, **kwargs)
elif formats == 1:
return b'data:image/jpg;base64,' + b64encode(self.save(img, None, **kwargs))
def download(self, url, path=None, scale_width=None, scale_height=None, tft_width=240, tft_height=240, block=1024, **kwargs):
'''rotation (0, 90, 180, 270), clipper_width, clipper_height'''
response = urequests.get(url, stream=True)
if path is None:
_image = self._jpg_decoder(response.raw.read(), scale_width, scale_height, tft_width, tft_height, **kwargs)
response.close()
return _image
else:
with open(path, 'wb') as f:
while True:
_data = response.raw.read(block)
if not _data:
break
else:
f.write(_data)
response.close()
def _jpg_decoder(self, jpg, scale_width, scale_height, tft_width, tft_height, **kwargs):
'''Automatically zoom based on the screen'''
if scale_width is None or scale_height is None:
_width = tft_width
_height = tft_height
for i in range(min(len(jpg), 1024)):
if jpg[i] == 0xFF and (jpg[i + 1] & 0xF0) == 0xC0:
if jpg[i + 1] not in [0xC4, 0xC8, 0xCC]:
_width = jpg[i + 7] << 8 | jpg[i + 8]
_height = jpg[i + 5] << 8| jpg[i + 6]
break
if _width > tft_width or _height > tft_height:
_scale = max(_width / tft_width, _height / tft_height) * 8
_decoder = Decoder(pixel_format="RGB565_BE", scale_width=round(_width / _scale) * 8, scale_height=round(_height / _scale) * 8, **kwargs)
else:
_decoder = Decoder(pixel_format="RGB565_BE", **kwargs)
else:
_decoder = Decoder(pixel_format="RGB565_BE", scale_width=scale_width // 8 * 8, scale_height=scale_height // 8 * 8, **kwargs)
_info = _decoder.get_img_info(jpg)
_image = IMG(_decoder.decode(jpg), _info[0], _info[1])
del _decoder, jpg
gc.collect()
return _image
#图像处理
Image = Image()

View File

@@ -0,0 +1,32 @@
"""
CI1302(继承ci130x)
MicroPython library for the CI130Xx (ASR-I2C)
=======================================================
@dahanzimin From the Mixly Team
"""
from ci130x import CI130X
class CI1302(CI130X):
def __init__(self, i2c_bus, func, addr=0x64):
self._device = i2c_bus
self._address = addr
self._cmd_id = None
self._func = func
def _wreg(self, reg):
'''Write memory address'''
try:
self._device.writeto(self._address, reg)
except:
self._func(1, 700) # Power on
self._device.writeto(self._address, reg)
def _rreg(self, reg, nbytes=1):
'''Read memory address'''
try:
return self._device.readfrom_mem(self._address, reg, nbytes)
except:
self._func(1, 700) # Power on
return self._device.readfrom_mem(self._address, reg, nbytes)

View File

@@ -0,0 +1,195 @@
# -*- coding: UTF-8 -*-
import time
from micropython import const
_ES_MODULE_ADC = const(0x01)
_ES_MODULE_DAC = const(0x02)
_ES_MODULE_ADC_DAC = const(0x03)
_ES_MODULE_LINE = const(0x04)
_BIT_LENGTH_16BITS = const(0x03)
_FMT_I2S_NORMAL = const(0x00)
_I2S_MODE_SLAVE = const(0x00)
_ADC_INPUT_LINE = const(0x01)
_DAC_OUTPUT_ALL = const(0x02)
_LCLK_DIV = const(256)
_MCLK_DIV = const(0x04)
class ES8374:
def __init__(self, i2c_bus=None, i2c_addr=0x10, gain=5, pga_en=1):
self.i2c_bus = i2c_bus
self.i2c_addr = i2c_addr
self.stop()
self.init_reg(_I2S_MODE_SLAVE, ((_BIT_LENGTH_16BITS << 4) | _FMT_I2S_NORMAL), _DAC_OUTPUT_ALL, _ADC_INPUT_LINE)
self.mic_gain(gain)
self.pga_enable(pga_en)
self.configI2SFormat(_ES_MODULE_ADC_DAC, _FMT_I2S_NORMAL)
def _readReg(self, regAddr):
return self.i2c_bus.readfrom_mem(self.i2c_addr, regAddr, 1)[0]
def _writeReg(self, regAddr, data):
self.i2c_bus.writeto_mem(
self.i2c_addr, regAddr, data.to_bytes(1, 'little'))
def init_reg(self, ms_mode, fmt, out_channel, in_channel):
self._writeReg(0x00, 0x3F) # IC Rst start
self._writeReg(0x00, 0x03) # IC Rst stop
self._writeReg(0x01, 0x7F) # IC clk on # M ORG 7F
self._writeReg(0x0f, (self._readReg(0x0F) & 0x7f) | (ms_mode << 7)) # CODEC IN I2S SLAVE MODE
self._writeReg(0x6F, 0xA0) # pll set:mode enable
self._writeReg(0x72, 0x41) # pll set:mode set
self._writeReg(0x09, 0x01) # pll set:reset on ,set start
self._writeReg(0x0C, 0x22) # pll set:k
self._writeReg(0x0D, 0x2E) # pll set:k
self._writeReg(0x0E, 0xC6) # pll set:k
self._writeReg(0x0A, 0x3A) # pll set:
self._writeReg(0x0B, 0x07) # pll set:n
self._writeReg(0x09, 0x41) # pll set:reset off ,set stop
self.i2sConfigClock()
self._writeReg(0x24, 0x08) # adc set
self._writeReg(0x36, 0x00) # dac set
self._writeReg(0x12, 0x30) # timming set
self._writeReg(0x13, 0x20) # timming set
self.configI2SFormat(_ES_MODULE_ADC, fmt)
self.configI2SFormat(_ES_MODULE_DAC, fmt)
self._writeReg(0x21, 0x50) # adc set: SEL LIN1 CH+PGAGAIN=0DB
self._writeReg(0x22, 0xFF) # adc set: PGA GAIN=0DB
self._writeReg(0x21, 0x14) # adc set: SEL LIN1 CH+PGAGAIN=18DB
self._writeReg(0x22, 0x55) # pga = +15db
# set class d divider = 33, to avoid the high frequency tone on laudspeaker
self._writeReg(0x08, 0x21)
self._writeReg(0x00, 0x80) # IC START
time.sleep(0.05)
self._writeReg(0x25, 0x00) # ADCVOLUME on
self._writeReg(0x38, 0x00) # DACVOLUME on
self._writeReg(0x14, 0x8A) # IC START
self._writeReg(0x15, 0x40) # IC START
self._writeReg(0x1A, 0xA0) # monoout set
self._writeReg(0x1B, 0x19) # monoout set
self._writeReg(0x1C, 0x90) # spk set
self._writeReg(0x1D, 0x01) # spk set
self._writeReg(0x1F, 0x00) # spk set
self._writeReg(0x1E, 0x20) # spk on
self._writeReg(0x28, 0x70) # alc set 0x70
# self._writeReg(0x26, 0x4E)# alc set
# self._writeReg(0x27, 0x10)# alc set
# self._writeReg(0x29, 0x00)# alc set
# self._writeReg(0x2B, 0x00)# alc set
self._writeReg(0x25, 0x00) # ADCVOLUME on
self._writeReg(0x38, 0x00) # DACVOLUME on
self._writeReg(0x37, 0x30) # dac set
# SEL:GPIO1=DMIC CLK OUT+SEL:GPIO2=PLL CLK OUT
self._writeReg(0x6D, 0x60)
self._writeReg(0x71, 0x05) # for automute setting
self._writeReg(0x73, 0x70)
# 0x3c Enable DAC and Enable Lout/Rout/1/2
self.configDACOutput(out_channel)
# 0x00 LINSEL & RINSEL, LIN1/RIN1 as ADC Input DSSEL,use one DS Reg11 DSR, LINPUT1-RINPUT1
self.configADCInput(in_channel)
self.voice_volume(95)
self._writeReg(0x37, 0x00) # dac set
'''
reg = self._readReg(0x1a) # disable lout
reg |= 0x08
self._writeReg(0x1a, reg)
reg &= 0xdf
self._writeReg(0x1a, reg)
self._writeReg(0x1D, 0x12) # mute speaker
self._writeReg(0x1E, 0x20) # disable class d
reg = self._readReg(0x15) # power up dac
reg &= 0xdf
self._writeReg(0x15, reg)
reg = self._readReg(0x1a) # disable lout
reg |= 0x20
self._writeReg(0x1a, reg)
reg &= 0xf7
self._writeReg(0x1a, reg)
self._writeReg(0x1D, 0x02) # mute speaker
self._writeReg(0x1E, 0xa0) # disable class d
self.voice_mute(0)
'''
def stop(self):
self.voice_mute(1)
self._writeReg(0x1a, self._readReg(0x1a) | 0x08)
self._writeReg(0x1a, self._readReg(0x1a) & 0xdf)
self._writeReg(0x1D, 0x12) # mute speaker
self._writeReg(0x1E, 0x20) # disable class d
self._writeReg(0x15, self._readReg(0x15) | 0x20)
self._writeReg(0x10, self._readReg(0x10) | 0xc0)
self._writeReg(0x21, self._readReg(0x21) | 0xc0)
def i2sConfigClock(self):
self._writeReg(0x0f, (self._readReg(0x0F) & 0xe0) | _MCLK_DIV)
# ADCFsMode,singel SPEED,RATIO=256
self._writeReg(0x06, _LCLK_DIV >> 8)
# ADCFsMode,singel SPEED,RATIO=256
self._writeReg(0x07, _LCLK_DIV & 0xFF)
def configI2SFormat(self, mode, fmt):
fmt_tmp = ((fmt & 0xf0) >> 4)
fmt_i2s = fmt & 0x0f
if (mode == _ES_MODULE_ADC or mode == _ES_MODULE_ADC_DAC):
reg = self._readReg(0x10)
reg &= 0xfc
self._writeReg(0x10, (reg | fmt_i2s))
self.setBitsPerSample(mode, 3)
if (mode == _ES_MODULE_DAC or mode == _ES_MODULE_ADC_DAC):
reg = self._readReg(0x11)
reg &= 0xfc
self._writeReg(0x11, (reg | fmt_i2s))
self.setBitsPerSample(mode, 3)
# set Bits Per Sample
def setBitsPerSample(self, mode, bit_per_smaple):
bits = bit_per_smaple & 0x0f
if (mode == _ES_MODULE_ADC or mode == _ES_MODULE_ADC_DAC):
reg = self._readReg(0x10)
reg &= 0xe3
self._writeReg(0x10, (reg | (bits << 2)))
if (mode == _ES_MODULE_DAC or mode == _ES_MODULE_ADC_DAC):
reg = self._readReg(0x11)
reg &= 0xe3
self._writeReg(0x11, (reg | (bits << 2)))
def configDACOutput(self, output):
self._writeReg(0x1d, 0x02)
reg = self._readReg(0x1c) # set spk mixer
reg |= 0x80
self._writeReg(0x1c, reg)
self._writeReg(0x1D, 0x02) # spk set
self._writeReg(0x1F, 0x00) # spk set
self._writeReg(0x1E, 0xA0) # spk on
def configADCInput(self, input):
reg = self._readReg(0x21)
reg = (reg & 0xcf) | 0x24
self._writeReg(0x21, reg)
def mic_volume(self, volume=None):
if volume is None:
return round(100 - self._readReg(0x25) * 100 / 192)
else:
self._writeReg(0x25, (100 - volume) * 192 // 100)
def voice_volume(self, volume=None):
if volume is None:
return round(100 - self._readReg(0x38) * 100 / 192)
else:
self._writeReg(0x38, (100 - volume) * 192 // 100)
def voice_mute(self, enable=None):
if enable is None:
return True if self._readReg(0x36) & 0x40 else False
else:
self._writeReg(0x36, (self._readReg(0x36) & 0xdf) | (enable << 5))
def mic_gain(self, gain):
gain_n = max(min(gain, 15), 0)
self._writeReg(0x22, (gain_n | (gain_n << 4))) # MIC PGA -3.5db ~ 24db
def pga_enable(self, enable):
self._writeReg(0x21, (self._readReg(0x21) & 0xfb) | (enable << 2)) # MIC PGA 0db or 15db

View File

@@ -0,0 +1,62 @@
"""
ESP-DL
MicroPython library for the ESP-DL(Inherit C module)
=======================================================
@dahanzimin From the Mixly Team
"""
from espdl import *
def analyze(results, keys=None, num=0):
if keys is None:
return True if results else False
if results:
if keys == "len":
return len(results)
else:
return results[num][keys]
#简单处理模型运行结果
_onboard_tft = None
def simple_run(molde, camera, keys="len", keyx=None, num=0, color=0xF800, size=2, sync=True):
global _onboard_tft
if _onboard_tft is None:
from mixgo_sant import onboard_tft
_onboard_tft = onboard_tft
if sync: _onboard_tft.fill(0, sync=False)
_img = camera.capture()
_onboard_tft.display(_img, sync=False)
_result = molde.run(_img.image)
_data = None
if _result:
_x_of = (camera.get_pixel_width() - _onboard_tft.width) // 2
_y_of = (camera.get_pixel_height() - _onboard_tft.height) // 2
for r in _result:
x = 0
y = 0
if r['box']:
_onboard_tft.rect(r['box'][0] - _x_of, r['box'][1] - _y_of, r['box'][2], r['box'][3], color, sync=False)
x = r['box'][0]
y = r['box'][1] + r['box'][3]
if "person" in r:
_onboard_tft.shows(r['person']['name'], x=x - _x_of, y=y - _y_of, size=size, center=0, color=color, sync=False)
else:
if r['box']:
_onboard_tft.shows(r['data'], x=x - _x_of, y=y - _y_of, size=size, center=0, color=color, sync=False)
else:
_onboard_tft.shows(r['data'], y=0, size=size, center=True, color=color, sync=False)
break
if keys == "len":
_data = len(_result)
else:
_data = _result[num][keys] if keyx is None else _result[num][keys][keyx]
if sync: _onboard_tft.show()
return _data

View File

@@ -0,0 +1,234 @@
{
"camera": {
"__require__": [
"time",
"gc",
"urequests",
"_camera",
"base64",
"machine",
"jpeg",
"mixgo_sant"
],
"__file__": true,
"__size__": 4782,
"__name__": "camera.py"
},
"ci1302x": {
"__require__": [
"ci130x"
],
"__file__": true,
"__size__": 939,
"__name__": "ci1302x.py"
},
"es8374": {
"__require__": [
"time",
"micropython"
],
"__file__": true,
"__size__": 8066,
"__name__": "es8374.py"
},
"esp_dl": {
"__require__": [
"espdl",
"mixgo_sant"
],
"__file__": true,
"__size__": 2060,
"__name__": "esp_dl.py"
},
"mixgo_nova": {
"__require__": [
"ws2812",
"machine",
"time",
"gc",
"st7735",
"math",
"_boot",
"mxc6655xa",
"ltr553als",
"ltr553als",
"rc522",
"mmc5603",
"hp203x",
"ahtx0",
"shtc3",
"machine"
],
"__file__": true,
"__size__": 10416,
"__name__": "mixgo_nova.py"
},
"mixgo_nova_voice": {
"__require__": [
"es8374",
"ustruct",
"music_spk",
"machine",
"esp_i2s",
"esp_tts",
"mixgo_nova",
"urequests"
],
"__file__": true,
"__size__": 2804,
"__name__": "mixgo_nova_voice.py"
},
"mixgo_sant": {
"__require__": [
"gc",
"time",
"math",
"machine",
"music",
"ws2812x",
"st7789_cf",
"sant_bot",
"sc7a20",
"ltr553als",
"shtc3",
"mmc5603",
"ci1302x"
],
"__file__": true,
"__size__": 7375,
"__name__": "mixgo_sant.py"
},
"mixgo_soar": {
"__require__": [
"ws2812",
"machine",
"time",
"gc",
"math",
"st7789_bf",
"soar_bot",
"spl06_001",
"qmi8658",
"ltr553als",
"mmc5603"
],
"__file__": true,
"__size__": 6752,
"__name__": "mixgo_soar.py"
},
"mixgo_soar_voice": {
"__require__": [
"es8374",
"ustruct",
"music_spk",
"machine",
"esp_i2s",
"esp_tts",
"mixgo_soar",
"urequests"
],
"__file__": true,
"__size__": 2804,
"__name__": "mixgo_soar_voice.py"
},
"music_spk": {
"__require__": [
"time",
"math",
"struct"
],
"__file__": true,
"__size__": 7981,
"__name__": "music_spk.py"
},
"nova_g1": {
"__require__": [
"micropython",
"mixgo_nova"
],
"__file__": true,
"__size__": 3860,
"__name__": "nova_g1.py"
},
"sant_bot": {
"__require__": [
"time",
"micropython"
],
"__file__": true,
"__size__": 5064,
"__name__": "sant_bot.py"
},
"sant_g2": {
"__require__": [
"gc",
"machine",
"rc522",
"cbr817"
],
"__file__": true,
"__size__": 729,
"__name__": "sant_g2.py"
},
"sant_gx": {
"__require__": [
"gc",
"machine",
"rc522",
"cbr817"
],
"__file__": true,
"__size__": 731,
"__name__": "sant_gx.py"
},
"sant_tts": {
"__require__": [
"gc",
"esp_tts",
"machine",
"pwm_audio",
"mixgo_sant"
],
"__file__": true,
"__size__": 747,
"__name__": "sant_tts.py"
},
"soar_bot": {
"__require__": [
"time",
"micropython"
],
"__file__": true,
"__size__": 4048,
"__name__": "soar_bot.py"
},
"st7789_bf": {
"__require__": [
"time",
"uframebuf",
"machine"
],
"__file__": true,
"__size__": 3711,
"__name__": "st7789_bf.py"
},
"st7789_cf": {
"__require__": [
"time",
"uframebuf",
"machine",
"camera"
],
"__file__": true,
"__size__": 3595,
"__name__": "st7789_cf.py"
},
"ws2812x": {
"__require__": [
"time"
],
"__file__": true,
"__size__": 1957,
"__name__": "ws2812x.py"
}
}

View File

@@ -0,0 +1,355 @@
"""
mixgo_zero Zi Onboard resources
Micropython library for the mixgo_zero Zi Onboard resources
=======================================================
#Preliminary composition 20231020
#S3定时器ID(-1,0,1,2,3(led))
dahanzimin From the Mixly Team
"""
from ws2812 import NeoPixel
from machine import *
import time
import gc
import st7735
import math
'''RTC'''
rtc_clock = RTC()
'''I2C-onboard'''
version = not Pin(13, Pin.IN, Pin.PULL_DOWN).value()
onboard_i2c = SoftI2C(scl=Pin(36), sda=Pin(37), freq=400000)
onboard_i2c_soft = SoftI2C(scl=Pin(36) if version else Pin(13), sda=Pin(15), freq=400000)
onboard_i2c_scan = onboard_i2c.scan()
'''SPI-onboard'''
try:
import _boot
onboard_spi = _boot.onboard_spi
onboard_spi.init(baudrate=50000000)
except:
onboard_spi = SPI(1, baudrate=50000000, polarity=0, phase=0)
'''TFT/128*160'''
onboard_tft = st7735.ST7735(
onboard_spi, 160, 128, dc_pin=18, cs_pin=45, bl_pin=14, font_address=0x700000)
'''ACC-Sensor'''
try:
import mxc6655xa
onboard_acc = mxc6655xa.MXC6655XA(onboard_i2c, front=True)
except Exception as e:
print("Warning: Failed to communicate with MXC6655XA (ACC) or", e)
'''ALS_PS-Sensor *2'''
try:
import ltr553als
onboard_als_l = ltr553als.LTR_553ALS(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with TR_553ALS (ALS&PS) or", e)
try:
import ltr553als
onboard_als_r = ltr553als.LTR_553ALS(onboard_i2c_soft)
except Exception as e:
print("Warning: Failed to communicate with TR_553ALS (ALS&PS) or", e)
'''BPS-Sensor'''
if 0x76 in onboard_i2c_scan:
try:
import hp203x
onboard_bps = hp203x.HP203X(onboard_i2c_soft)
except Exception as e:
print("Warning: Failed to communicate with HP203X (BPS) or", e)
'''THS-Sensor'''
if 0x38 in onboard_i2c_scan:
try:
import ahtx0
onboard_ths = ahtx0.AHTx0(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with AHTx0 (THS) or", e)
if 0x70 in onboard_i2c_scan:
try:
import shtc3
onboard_ths = shtc3.SHTC3(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with GXHTC3 (THS) or", e)
'''RFID-Sensor'''
try:
import rc522
onboard_rfid = rc522.RC522(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with RC522 (RFID) or", e)
'''MGS-Sensor'''
try:
import mmc5603
onboard_mgs = mmc5603.MMC5603(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with MMC5603 (MGS) or", e)
'''2RGB_WS2812'''
onboard_rgb = NeoPixel(Pin(38), 4)
'''5KEY_Sensor'''
class KEYSensor:
def __init__(self, pin, range):
self.pin = pin
self.adc = ADC(Pin(pin), atten=ADC.ATTN_0DB)
self.range = range
self.flag = True
def _value(self):
values = []
for _ in range(50):
values.append(self.adc.read())
time.sleep_us(2)
return (self.range-200) < min(values) < (self.range+200)
def get_presses(self, delay=1):
last_time, presses = time.time(), 0
while time.time() < last_time + delay:
time.sleep_ms(50)
if self.was_pressed():
presses += 1
return presses
def is_pressed(self):
return self._value()
def was_pressed(self):
if (self._value() != self.flag):
self.flag = self._value()
if self.flag:
return True
else:
return False
def irq(self, handler, trigger):
Pin(self.pin, Pin.IN).irq(handler=handler, trigger=trigger)
'''1KEY_Button'''
class Button(KEYSensor):
def __init__(self, pin):
self.pin = pin
self.key = Pin(pin, Pin.IN)
self.flag = True
def _value(self):
return not self.key.value()
B1key = Button(0)
B2key = KEYSensor(17, 0)
A1key = KEYSensor(17, 2900)
A2key = KEYSensor(17, 2300)
A3key = KEYSensor(17, 1650)
A4key = KEYSensor(17, 850)
'''2-TouchPad'''
class Touch_Pad:
__species = {}
__first_init = True
def __new__(cls, pin, *args, **kwargs):
if pin not in cls.__species.keys():
cls.__first_init = True
cls.__species[pin] = object.__new__(cls)
return cls.__species[pin]
def __init__(self, pin, default=30000):
if self.__first_init:
self.__first_init = False
from machine import TouchPad
self._pin = TouchPad(Pin(pin))
self.raw = self._pin.read()
if self.raw >= default * 1.5:
self.raw = default
def touch(self, value=None):
return self._pin.read() > value if value else self._pin.read()
# Touch with function call
def touched(pin, value=60000):
return Touch_Pad(pin).touch(value)
def touch_slide(pina, pinb):
return ((Touch_Pad(pina).touch() - Touch_Pad(pina).raw) - (Touch_Pad(pinb).touch() - Touch_Pad(pinb).raw)) // 10
'''2LED-Tristate'''
class LED_T:
def __init__(self, pin, timer_id=3):
self._pin = pin
self._pwm = 0
self._index_pwm = [0, 0]
Timer(timer_id, freq=2500, mode=Timer.PERIODIC, callback=self.tim_callback)
def _cutonoff(self, val):
if val == 0:
Pin(self._pin, Pin.IN)
elif val == 1:
Pin(self._pin, Pin.OUT).value(1)
elif val == -1:
Pin(self._pin, Pin.OUT).value(0)
def tim_callback(self, tim):
if self._pwm <= 25:
if self._pwm * 4 < self._index_pwm[0]:
self._cutonoff(1)
else:
self._cutonoff(0)
else:
if (self._pwm - 26) * 4 < self._index_pwm[1]:
self._cutonoff(-1)
else:
self._cutonoff(0)
self._pwm = self._pwm + 1 if self._pwm <= 51 else 0
def setbrightness(self, index, val):
if not 0 <= val <= 100:
raise ValueError("Brightness must be in the range: 0~100%")
self._index_pwm[index-1] = val
def getbrightness(self, index):
return self._index_pwm[index-1]
def setonoff(self, index, val):
if (val == -1):
if self._index_pwm[index-1] < 50:
self._index_pwm[index-1] = 100
else:
self._index_pwm[index-1] = 0
elif (val == 1):
self._index_pwm[index-1] = 100
elif (val == 0):
self._index_pwm[index-1] = 0
def getonoff(self, index):
return True if self._index_pwm[index-1] > 0 else False
'''2LED-Independent'''
class LED_I:
def __init__(self, pins=[]):
self._pins = [PWM(Pin(pin), duty_u16=0) for pin in pins]
self._brightness = [0 for _ in range(len(self._pins))]
def setbrightness(self, index, val):
if not 0 <= val <= 100:
raise ValueError("Brightness must be in the range: 0-100%")
self._brightness[index - 1] = val
self._pins[index - 1].duty_u16(val * 65535 // 100)
def getbrightness(self, index):
return self._brightness[index - 1]
def setonoff(self, index, val):
if val == -1:
self.setbrightness(index, 100) if self.getbrightness(
index) < 50 else self.setbrightness(index, 0)
elif val == 1:
self.setbrightness(index, 100)
elif val == 0:
self.setbrightness(index, 0)
def getonoff(self, index):
return True if self.getbrightness(index) > 50 else False
onboard_led = LED_I(pins=[42, 13]) if version else LED_T(42, timer_id=3)
class Clock:
def __init__(self, x, y, radius, color, oled=onboard_tft): # 定义时钟中心点和半径
self.display = oled
self.xc = x
self.yc = y
self.r = radius
self.color = color
self.hour = 0
self.min = 0
self.sec = 0
def set_time(self, h, m, s): # 设定时间
self.hour = h
self.min = m
self.sec = s
def set_rtctime(self): # 设定时间
t = rtc_clock.datetime()
self.hour = t[4]
self.min = t[5]
self.sec = t[6]
def drawDial(self, color): # 画钟表刻度
r_tic1 = self.r - 1
r_tic2 = self.r - 2
self.display.ellipse(self.xc, self.yc, self.r, self.r, self.color)
self.display.ellipse(self.xc, self.yc, 2, 2, self.color, True)
for h in range(12):
at = math.pi * 2.0 * h / 12.0
x1 = round(self.xc + r_tic1 * math.sin(at))
x2 = round(self.xc + r_tic2 * math.sin(at))
y1 = round(self.yc - r_tic1 * math.cos(at))
y2 = round(self.yc - r_tic2 * math.cos(at))
self.display.line(x1, y1, x2, y2, color)
def drawHour(self, color): # 画时针
r_hour = int(self.r / 10.0 * 5)
ah = math.pi * 2.0 * ((self.hour % 12) + self.min / 60.0) / 12.0
xh = int(self.xc + r_hour * math.sin(ah))
yh = int(self.yc - r_hour * math.cos(ah))
self.display.line(self.xc, self.yc, xh, yh, color)
def drawMin(self, color): # 画分针
r_min = int(self.r / 10.0 * 7)
am = math.pi * 2.0 * self.min / 60.0
xm = round(self.xc + r_min * math.sin(am))
ym = round(self.yc - r_min * math.cos(am))
self.display.line(self.xc, self.yc, xm, ym, color)
def drawSec(self, color): # 画秒针
r_sec = int(self.r / 10.0 * 9)
asec = math.pi * 2.0 * self.sec / 60.0
xs = round(self.xc + r_sec * math.sin(asec))
ys = round(self.yc - r_sec * math.cos(asec))
self.display.line(self.xc, self.yc, xs, ys, color)
def draw_clock(self): # 画完整钟表
self.drawDial(self.color)
self.drawHour(self.color)
self.drawMin(self.color)
self.drawSec(self.color)
self.display.show()
self.clear(0)
def clear(self, color=0): # 清除
self.drawHour(color)
self.drawMin(color)
self.drawSec(color)
'''Reclaim memory'''
gc.collect()

View File

@@ -0,0 +1,93 @@
"""
mixgo_nova Voice Onboard resources
Micropython library for the mixgo_nova Onboard resources
=======================================================
@dahanzimin From the Mixly Team
"""
import es8374
import ustruct
import music_spk
from machine import Pin
from esp_i2s import I2S
from esp_tts import TTS
from mixgo_nova import onboard_i2c
ob_code = es8374.ES8374(onboard_i2c)
ob_tts = TTS()
ob_audio = I2S(0, sck=Pin(34), ws=Pin(47), sd_out=Pin(48), sd_in=Pin(33), mck=Pin(35), channels=1)
ob_audio.start()
spk_midi = music_spk.MIDI(ob_audio)
def u2s(n):
return n if n < (1 << 15) else n - (1 << 16)
def sound_level():
buf = bytearray(100)
values = []
ob_audio.readinto(buf)
for i in range(len(buf)//2):
values.append(u2s(buf[i * 2] | buf[i * 2 + 1] << 8))
return max(values) - min(values)
def play_tts(text, speed=3):
ob_audio.stop()
ob_audio.sample_rate = 16000
ob_audio.start()
if ob_tts.parse_chinese(text):
while True:
data = ob_tts.stream_play(speed)
if not data:
break
else:
ob_audio.write(data)
def play_audio(path, chunk=1024):
file = open(path, 'rb')
header = file.read(44)
if header[8:12] != b'WAVE':
raise Error('not a WAVE file')
ob_audio.stop()
ob_audio.sample_rate = ustruct.unpack('<I', header[24:28])[0]
ob_audio.start()
file.seek(44)
while True:
block = file.read(chunk)
if not block:
break
ob_audio.write(block)
file.close()
def record_audio(path, seconds=5, sample_rate=22050, chunk=512):
ob_audio.stop()
ob_audio.sample_rate = sample_rate
ob_audio.start()
file_size = sample_rate * 16 * 1 * seconds // 8
wav_header = bytearray(44)
wav_header[0:4] = b'RIFF'
ustruct.pack_into('<I', wav_header, 4, file_size + 36)
wav_header[8:40] = b'WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00"V\x00\x00D\xac\x00\x00\x02\x00\x10\x00data'
ustruct.pack_into('<I', wav_header, 40, file_size)
buf = bytearray(chunk)
file = open(path, 'wb')
file.write(wav_header)
for _ in range(file_size // chunk):
ob_audio.readinto(buf)
file.write(buf)
file.close()
def play_audio_url(url, chunk=1024):
import urequests
response = urequests.get(url, stream=True)
header = response.raw.read(44)
if header[8:12] != b'WAVE':
raise Error('not a WAVE file')
ob_audio.stop()
ob_audio.sample_rate = ustruct.unpack('<I', header[24:28])[0]
ob_audio.start()
while True:
block = response.raw.read(chunk)
if not block:
break
ob_audio.write(block)
response.close()

View File

@@ -0,0 +1,245 @@
"""
mixgo_sant Onboard resources(v2.0)
Micropython library for the mixgo_sant Onboard resources
=======================================================
@dahanzimin From the Mixly Team
"""
import gc
import time
import math
from machine import *
from music import MIDI
from ws2812x import NeoPixel
'''RTC'''
rtc_clock = RTC()
'''I2C-onboard'''
# inboard_i2c = I2C(0)
inboard_i2c = SoftI2C(scl=Pin(47), sda=Pin(48), freq=400000)
onboard_i2c = SoftI2C(scl=Pin(47), sda=Pin(38), freq=400000)
'''SPI-onboard'''
onboard_spi = SPI(1, baudrate=80000000, polarity=1, phase=1)
'''BOT035-Sensor'''
try:
import sant_bot
onboard_bot = sant_bot.BOT035(inboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with BOT035 (Coprocessor) or", e)
'''TFT/240*240'''
import st7789_cf
onboard_tft = st7789_cf.ST7789(onboard_spi, 240, 240, dc_pin=45, reset=onboard_bot.tft_reset, backlight=onboard_bot.tft_brightness, font_address=0xF00000)
'''ACC-Sensor'''
try:
import sc7a20
onboard_acc = sc7a20.SC7A20(inboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with SC7A20H (ACC) or", e)
'''ALS_PS-Sensor *2'''
try:
import ltr553als
onboard_als_l = ltr553als.LTR_553ALS(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with TR_553ALS-L (ALS&PS) or", e)
try:
# import ltr553als
onboard_als_r = ltr553als.LTR_553ALS(inboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with TR_553ALS-R (ALS&PS) or", e)
'''THS-Sensor'''
try:
import shtc3
onboard_ths = shtc3.SHTC3(inboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with GXHTC3 (THS) or", e)
'''MGS-Sensor'''
try:
import mmc5603
onboard_mgs = mmc5603.MMC5603(inboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with MMC5603 (MGS) or", e)
'''ASR-Sensor'''
try:
from ci1302x import CI1302
onboard_asr = CI1302(inboard_i2c, onboard_bot.asr_en)
except Exception as e:
print("Warning: Failed to communicate with CI130X (ASR) or", e)
'''2RGB_WS2812'''
onboard_rgb = NeoPixel(onboard_bot.rgb_sync, 4)
'''1Buzzer-Music'''
onboard_music = MIDI(46, pa_ctrl=onboard_bot.spk_en)
'''5KEY_Sensor'''
class KEYSensor:
def __init__(self, pin, range):
self.pin = pin
self.adc = ADC(Pin(pin))
self.adc.atten(ADC.ATTN_0DB)
self.range = range
self.flag = True
def _value(self):
values = []
for _ in range(25):
values.append(self.adc.read())
time.sleep_us(5)
return (self.range-200) < min(values) < (self.range+200)
def get_presses(self, delay=1):
last_time, presses = time.time(), 0
while time.time() < last_time + delay:
time.sleep_ms(50)
if self.was_pressed():
presses += 1
return presses
def is_pressed(self):
return self._value()
def was_pressed(self):
if (self._value() != self.flag):
self.flag = self._value()
if self.flag:
return True
else:
return False
def irq(self, handler, trigger):
Pin(self.pin, Pin.IN).irq(handler=handler, trigger=trigger)
'''1KEY_Button'''
class Button(KEYSensor):
def __init__(self, pin):
self.pin = pin
self.key = Pin(pin, Pin.IN)
self.flag = True
def _value(self):
return not self.key.value()
B1key = Button(0)
B2key = KEYSensor(17, 0)
A1key = KEYSensor(17, 1600)
A2key = KEYSensor(17, 1100)
A3key = KEYSensor(17, 550)
A4key = KEYSensor(17, 2100)
'''2-LED'''
class LED:
def __init__(self, func):
self._func = func
def setbrightness(self, index, val):
self._func(index, val)
def getbrightness(self, index):
return self._func(index)
def setonoff(self, index, val):
if val == -1:
self.setbrightness(index, 100) if self.getbrightness(
index) < 50 else self.setbrightness(index, 0)
elif val == 1:
self.setbrightness(index, 100)
elif val == 0:
self.setbrightness(index, 0)
def getonoff(self, index):
return True if self.getbrightness(index) > 50 else False
onboard_led = LED(onboard_bot.led_pwm)
class Voice_Energy:
def read(self, samples=10):
values = []
for _ in range(samples):
values.append(int.from_bytes(onboard_asr._rreg(
0x08, 3)[:2], 'little')) # 在语音识别里获取
return sorted(values)[samples // 2]
onboard_sound = Voice_Energy()
class Clock:
def __init__(self, x, y, radius, color, oled=onboard_tft): # 定义时钟中心点和半径
self.display = oled
self.xc = x
self.yc = y
self.r = radius
self.color = color
self.hour = 0
self.min = 0
self.sec = 0
def set_time(self, h, m, s): # 设定时间
self.hour = h
self.min = m
self.sec = s
def set_rtctime(self): # 设定时间
t = rtc_clock.datetime()
self.hour = t[4]
self.min = t[5]
self.sec = t[6]
def drawDial(self, color): # 画钟表刻度
r_tic1 = self.r - 1
r_tic2 = self.r - 2
self.display.ellipse(self.xc, self.yc, self.r, self.r, color)
self.display.ellipse(self.xc, self.yc, 2, 2, color, True)
for h in range(12):
at = math.pi * 2.0 * h / 12.0
x1 = round(self.xc + r_tic1 * math.sin(at))
x2 = round(self.xc + r_tic2 * math.sin(at))
y1 = round(self.yc - r_tic1 * math.cos(at))
y2 = round(self.yc - r_tic2 * math.cos(at))
self.display.line(x1, y1, x2, y2, color)
def drawHour(self, color): # 画时针
r_hour = int(self.r / 10.0 * 5)
ah = math.pi * 2.0 * ((self.hour % 12) + self.min / 60.0) / 12.0
xh = int(self.xc + r_hour * math.sin(ah))
yh = int(self.yc - r_hour * math.cos(ah))
self.display.line(self.xc, self.yc, xh, yh, color)
def drawMin(self, color): # 画分针
r_min = int(self.r / 10.0 * 7)
am = math.pi * 2.0 * self.min / 60.0
xm = round(self.xc + r_min * math.sin(am))
ym = round(self.yc - r_min * math.cos(am))
self.display.line(self.xc, self.yc, xm, ym, color)
def drawSec(self, color): # 画秒针
r_sec = int(self.r / 10.0 * 9)
asec = math.pi * 2.0 * self.sec / 60.0
xs = round(self.xc + r_sec * math.sin(asec))
ys = round(self.yc - r_sec * math.cos(asec))
self.display.line(self.xc, self.yc, xs, ys, color)
def draw_clock(self, bg_color=0): # 画完整钟表
self.drawDial(self.color)
self.drawHour(self.color)
self.drawMin(self.color)
self.drawSec(self.color)
self.display.show()
self.drawHour(bg_color)
self.drawMin(bg_color)
self.drawSec(bg_color)
def clear(self, color=0): # 清除
self.display.ellipse(self.xc, self.yc, self.r, self.r, color, True)
'''Reclaim memory'''
gc.collect()

View File

@@ -0,0 +1,221 @@
"""
mixgo_soar onboard resources
Micropython library for the mixgo_soar onboard resources
=======================================================
@dahanzimin From the Mixly Team
"""
from ws2812 import NeoPixel
from machine import *
import time
import gc
import math
import st7789_bf
'''RTC'''
rtc_clock = RTC()
'''I2C-onboard'''
# onboard_i2c = I2C(0)
onboard_i2c = SoftI2C(scl=Pin(47), sda=Pin(48), freq=400000)
'''SPI-onboard'''
onboard_spi = SPI(1, baudrate=80000000, polarity=0, phase=0)
'''BOT035-Sensor'''
try:
import soar_bot
onboard_bot = soar_bot.BOT035(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with BOT035 (Coprocessor) or", e)
'''BPS-Sensor'''
try:
import spl06_001
onboard_bps = spl06_001.SPL06(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with SPL06-001 (BPS) or", e)
'''IMU-Sensor'''
try:
import qmi8658
onboard_imu = qmi8658.QMI8658(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with QMI8658 (IMU) or", e)
'''ALS_PS-Sensor'''
try:
import ltr553als
onboard_als = ltr553als.LTR_553ALS(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with TR_553ALS (ALS&PS) or", e)
'''MGS-Sensor'''
try:
import mmc5603
onboard_mgs = mmc5603.MMC5603(onboard_i2c)
except Exception as e:
print("Warning: Failed to communicate with MMC5603 (MGS) or", e)
'''TFT/240*240'''
onboard_tft = st7789_bf.ST7789(onboard_spi, 240, 240, dc_pin=46, cs_pin=45, bl_pin=onboard_bot.tft_brightness, brightness=0.6, font_address=0x700000)
'''2RGB_WS2812'''
onboard_rgb = NeoPixel(Pin(40), 4)
'''5KEY_Sensor'''
class KEYSensor:
def __init__(self, pin, range):
self.pin = pin
self.adc = ADC(Pin(pin), atten=ADC.ATTN_0DB)
self.range = range
self.flag = True
def _value(self):
values = []
for _ in range(50):
values.append(self.adc.read())
time.sleep_us(2)
return (self.range-200) < min(values) < (self.range+200)
def get_presses(self, delay=1):
last_time, presses = time.time(), 0
while time.time() < last_time + delay:
time.sleep_ms(50)
if self.was_pressed():
presses += 1
return presses
def is_pressed(self):
return self._value()
def was_pressed(self):
if (self._value() != self.flag):
self.flag = self._value()
if self.flag:
return True
else:
return False
def irq(self, handler, trigger):
Pin(self.pin, Pin.IN).irq(handler=handler, trigger=trigger)
'''1KEY_Button'''
class Button(KEYSensor):
def __init__(self, pin):
self.pin = pin
self.key = Pin(pin, Pin.IN)
self.flag = True
def _value(self):
return not self.key.value()
B1key = Button(0)
B2key = KEYSensor(17, 0)
A1key = KEYSensor(17, 2300)
A2key = KEYSensor(17, 1600)
A3key = KEYSensor(17, 800)
A4key = KEYSensor(17, 2900)
'''2LED-Independent'''
class LED:
def __init__(self, pins=[]):
self._pins = [PWM(Pin(pin), duty_u16=0) for pin in pins]
self._brightness = [0 for _ in range(len(self._pins))]
def setbrightness(self, index, val):
if not 0 <= val <= 100:
raise ValueError("Brightness must be in the range: 0-100%")
self._brightness[index - 1] = val
self._pins[index - 1].duty_u16(val * 65535 // 100)
def getbrightness(self, index):
return self._brightness[index - 1]
def setonoff(self, index, val):
if val == -1:
self.setbrightness(index, 100) if self.getbrightness(
index) < 50 else self.setbrightness(index, 0)
elif val == 1:
self.setbrightness(index, 100)
elif val == 0:
self.setbrightness(index, 0)
def getonoff(self, index):
return True if self.getbrightness(index) > 50 else False
onboard_led = LED([38, 39])
class Clock:
def __init__(self, x, y, radius, color, oled=onboard_tft): # 定义时钟中心点和半径
self.display = oled
self.xc = x
self.yc = y
self.r = radius
self.color = color
self.hour = 0
self.min = 0
self.sec = 0
def set_time(self, h, m, s): # 设定时间
self.hour = h
self.min = m
self.sec = s
def set_rtctime(self): # 设定时间
t = rtc_clock.datetime()
self.hour = t[4]
self.min = t[5]
self.sec = t[6]
def drawDial(self, color): # 画钟表刻度
r_tic1 = self.r - 1
r_tic2 = self.r - 2
self.display.ellipse(self.xc, self.yc, self.r, self.r, color)
self.display.ellipse(self.xc, self.yc, 2, 2, color, True)
for h in range(12):
at = math.pi * 2.0 * h / 12.0
x1 = round(self.xc + r_tic1 * math.sin(at))
x2 = round(self.xc + r_tic2 * math.sin(at))
y1 = round(self.yc - r_tic1 * math.cos(at))
y2 = round(self.yc - r_tic2 * math.cos(at))
self.display.line(x1, y1, x2, y2, color)
def drawHour(self, color): # 画时针
r_hour = int(self.r / 10.0 * 5)
ah = math.pi * 2.0 * ((self.hour % 12) + self.min / 60.0) / 12.0
xh = int(self.xc + r_hour * math.sin(ah))
yh = int(self.yc - r_hour * math.cos(ah))
self.display.line(self.xc, self.yc, xh, yh, color)
def drawMin(self, color): # 画分针
r_min = int(self.r / 10.0 * 7)
am = math.pi * 2.0 * self.min / 60.0
xm = round(self.xc + r_min * math.sin(am))
ym = round(self.yc - r_min * math.cos(am))
self.display.line(self.xc, self.yc, xm, ym, color)
def drawSec(self, color): # 画秒针
r_sec = int(self.r / 10.0 * 9)
asec = math.pi * 2.0 * self.sec / 60.0
xs = round(self.xc + r_sec * math.sin(asec))
ys = round(self.yc - r_sec * math.cos(asec))
self.display.line(self.xc, self.yc, xs, ys, color)
def draw_clock(self, bg_color=0): # 画完整钟表
self.drawDial(self.color)
self.drawHour(self.color)
self.drawMin(self.color)
self.drawSec(self.color)
self.display.show()
self.drawHour(bg_color)
self.drawMin(bg_color)
self.drawSec(bg_color)
def clear(self, color=0): # 清除
self.display.ellipse(self.xc, self.yc, self.r, self.r, color, True)
'''Reclaim memory'''
gc.collect()

View File

@@ -0,0 +1,93 @@
"""
mixgo_soar Voice Onboard resources
Micropython library for the mixgo_soar Onboard resources
=======================================================
@dahanzimin From the Mixly Team
"""
import es8374
import ustruct
import music_spk
from machine import Pin
from esp_i2s import I2S
from esp_tts import TTS
from mixgo_soar import onboard_i2c
ob_code = es8374.ES8374(onboard_i2c)
ob_tts = TTS()
ob_audio = I2S(0, sck=Pin(37), ws=Pin(35), sd_out=Pin(34), sd_in=Pin(36), mck=Pin(33), channels=1)
ob_audio.start()
spk_midi = music_spk.MIDI(ob_audio)
def u2s(n):
return n if n < (1 << 15) else n - (1 << 16)
def sound_level():
buf = bytearray(100)
values = []
ob_audio.readinto(buf)
for i in range(len(buf)//2):
values.append(u2s(buf[i * 2] | buf[i * 2 + 1] << 8))
return max(values) - min(values)
def play_tts(text, speed=3):
ob_audio.stop()
ob_audio.sample_rate = 16000
ob_audio.start()
if ob_tts.parse_chinese(text):
while True:
data = ob_tts.stream_play(speed)
if not data:
break
else:
ob_audio.write(data)
def play_audio(path, chunk=1024):
file = open(path, 'rb')
header = file.read(44)
if header[8:12] != b'WAVE':
raise Error('not a WAVE file')
ob_audio.stop()
ob_audio.sample_rate = ustruct.unpack('<I', header[24:28])[0]
ob_audio.start()
file.seek(44)
while True:
block = file.read(chunk)
if not block:
break
ob_audio.write(block)
file.close()
def record_audio(path, seconds=5, sample_rate=22050, chunk=512):
ob_audio.stop()
ob_audio.sample_rate = sample_rate
ob_audio.start()
file_size = sample_rate * 16 * 1 * seconds // 8
wav_header = bytearray(44)
wav_header[0:4] = b'RIFF'
ustruct.pack_into('<I', wav_header, 4, file_size + 36)
wav_header[8:40] = b'WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00"V\x00\x00D\xac\x00\x00\x02\x00\x10\x00data'
ustruct.pack_into('<I', wav_header, 40, file_size)
buf = bytearray(chunk)
file = open(path, 'wb')
file.write(wav_header)
for _ in range(file_size // chunk):
ob_audio.readinto(buf)
file.write(buf)
file.close()
def play_audio_url(url, chunk=1024):
import urequests
response = urequests.get(url, stream=True)
header = response.raw.read(44)
if header[8:12] != b'WAVE':
raise Error('not a WAVE file')
ob_audio.stop()
ob_audio.sample_rate = ustruct.unpack('<I', header[24:28])[0]
ob_audio.start()
while True:
block = response.raw.read(chunk)
if not block:
break
ob_audio.write(block)
response.close()

View File

@@ -0,0 +1,170 @@
"""
Music buzzer
Micropython library for the Music buzzer
=======================================================
#Based on Author: qiren123(MIDI Music) 20220618
#Make changes to instantiation 20220622
#Increase level reversal selection 20220716
dahanzimin From the Mixly Team
"""
import time
import math
import struct
normal_tone = {
'A1': 55, 'B1': 62, 'C1': 33, 'D1': 37, 'E1': 41, 'F1': 44, 'G1': 49,
'A2': 110, 'B2': 123, 'C2': 65, 'D2': 73, 'E2': 82, 'F2': 87, 'G2': 98,
'A3': 220, 'B3': 247, 'C3': 131, 'D3': 147, 'E3': 165, 'F3': 175, 'G3': 196,
'A4': 440, 'B4': 494, 'C4': 262, 'D4': 294, 'E4': 330, 'F4': 349, 'G4': 392,
'A5': 880, 'B5': 988, 'C5': 523, 'D5': 587, 'E5': 659, 'F5': 698, 'G5': 784,
'A6': 1760, 'B6': 1976, 'C6': 1047, 'D6': 1175, 'E6': 1319, 'F6': 1397, 'G6': 1568,
'A7': 3520, 'B7': 3951, 'C7': 2093, 'D7': 2349, 'E7': 2637, 'F7': 2794, 'G7': 3135,
'A8': 7040, 'B8': 7902, 'C8': 4186, 'D8': 4699, 'E8': 5274, 'F8': 5588, 'G8': 6271,
'A9': 14080, 'B9': 15804}
Letter = 'ABCDEFG#R'
class MIDI():
def __init__(self, i2s_bus, rate=22050):
self.reset()
self._rate = rate
self.i2s_bus = i2s_bus
def _wave(self, frequency):
_period = self._rate // frequency
_samples = bytearray()
for i in range(_period):
sample = 32768 + int((32767) * math.sin(2 * math.pi * i / _period))
_samples.extend(struct.pack("<h", sample))
return bytes(_samples)
def _tone(self, frequency, duration_ms=1000):
_wave = self._wave(frequency)
_samples = self._rate * duration_ms // 1000
_data = _wave * (_samples // (len(_wave) // 2) + 1)
_data = _data[:_samples * 2]
_wbytes = 0
while _wbytes < len(_data):
send_size = min(512, len(_data) - _wbytes)
self.i2s_bus.write(_data[_wbytes: _wbytes + send_size])
_wbytes += send_size
def set_tempo(self, ticks=4, bpm=120):
self.ticks = ticks
self.bpm = bpm
self.beat = 60000 / self.bpm / self.ticks
def set_octave(self, octave=4):
self.octave = octave
def set_duration(self, duration=4):
self.duration = duration
def get_tempo(self):
return (self.ticks, self.bpm)
def get_octave(self):
return self.octave
def get_duration(self):
return self.duration
def reset(self):
self.set_duration()
self.set_octave()
self.set_tempo()
def parse(self, tone, dict):
time = self.beat * self.duration
pos = tone.find(':')
if pos != -1:
time = self.beat * int(tone[(pos + 1):])
tone = tone[:pos]
freq, tone_size = 1, len(tone)
if 'R' in tone:
freq = 20000
elif tone_size == 1:
freq = dict[tone[0] + str(self.octave)]
elif tone_size == 2:
freq = dict[tone]
self.set_octave(tone[1:])
return int(freq), int(time)
def midi(self, tone):
pos = tone.find('#')
if pos != -1:
return self.parse(tone.replace('#', ''), normal_tone)
pos = tone.find('B')
if pos != -1 and pos != 0:
return self.parse(tone.replace('B', ''), normal_tone)
return self.parse(tone, normal_tone)
def set_default(self, tone):
pos = tone.find(':')
if pos != -1:
self.set_duration(int(tone[(pos + 1):]))
tone = tone[:pos]
def play(self, tune, duration=None):
if duration is None:
self.set_default(tune[0])
else:
self.set_duration(duration)
for tone in tune:
tone = tone.upper()
if tone[0] not in Letter:
continue
midi = self.midi(tone)
self._tone(midi[0], midi[1])
self._tone(20000, 1)
time.sleep_ms(10)
def pitch(self, freq):
pass
def pitch_time(self, freq, delay):
self._tone(freq, delay)
time.sleep_ms(10)
def stop(self):
pass
DADADADUM = ['r4:2', 'g', 'g', 'g', 'eb:8', 'r:2', 'f', 'f', 'f', 'd:8']
ENTERTAINER = ['d4:1', 'd#', 'e', 'c5:2', 'e4:1', 'c5:2', 'e4:1',
'c5:3', 'c:1', 'd', 'd#', 'e', 'c', 'd', 'e:2', 'b4:1', 'd5:2', 'c:4']
PRELUDE = ['c4:1', 'e', 'g', 'c5', 'e', 'g4', 'c5', 'e', 'c4', 'e', 'g', 'c5', 'e', 'g4', 'c5', 'e', 'c4', 'd', 'g', 'd5', 'f', 'g4', 'd5', 'f', 'c4', 'd', 'g', 'd5', 'f', 'g4', 'd5',
'f', 'b3', 'd4', 'g', 'd5', 'f', 'g4', 'd5', 'f', 'b3', 'd4', 'g', 'd5', 'f', 'g4', 'd5', 'f', 'c4', 'e', 'g', 'c5', 'e', 'g4', 'c5', 'e', 'c4', 'e', 'g', 'c5', 'e', 'g4', 'c5', 'e']
ODE = ['e4', 'e', 'f', 'g', 'g', 'f', 'e', 'd', 'c', 'c', 'd', 'e', 'e:6', 'd:2', 'd:8',
'e:4', 'e', 'f', 'g', 'g', 'f', 'e', 'd', 'c', 'c', 'd', 'e', 'd:6', 'c:2', 'c:8']
NYAN = ['f#5:1', 'g#', 'c#:1', 'd#:2', 'b4:1', 'd5:1', 'c#', 'b4:2', 'b', 'c#5', 'd', 'd:1', 'c#', 'b4:1', 'c#5:1', 'd#', 'f#', 'g#', 'd#', 'f#', 'c#', 'd', 'b4', 'c#5', 'b4', 'd#5:2', 'f#', 'g#:1', 'd#', 'f#', 'c#', 'd#', 'b4', 'd5', 'd#', 'd', 'c#', 'b4', 'c#5', 'd:2', 'b4:1', 'c#5', 'd#', 'f#', 'c#', 'd', 'c#', 'b4', 'c#5:2', 'b4', 'c#5',
'b4', 'f#:1', 'g#', 'b:2', 'f#:1', 'g#', 'b', 'c#5', 'd#', 'b4', 'e5', 'd#', 'e', 'f#', 'b4:2', 'b', 'f#:1', 'g#', 'b', 'f#', 'e5', 'd#', 'c#', 'b4', 'f#', 'd#', 'e', 'f#', 'b:2', 'f#:1', 'g#', 'b:2', 'f#:1', 'g#', 'b', 'b', 'c#5', 'd#', 'b4', 'f#', 'g#', 'f#', 'b:2', 'b:1', 'a#', 'b', 'f#', 'g#', 'b', 'e5', 'd#', 'e', 'f#', 'b4:2', 'c#5']
RINGTONE = ['c4:1', 'd', 'e:2', 'g', 'd:1', 'e',
'f:2', 'a', 'e:1', 'f', 'g:2', 'b', 'c5:4']
FUNK = ['c2:2', 'c', 'd#', 'c:1', 'f:2', 'c:1', 'f:2', 'f#',
'g', 'c', 'c', 'g', 'c:1', 'f#:2', 'c:1', 'f#:2', 'f', 'd#']
BLUES = ['c2:2', 'e', 'g', 'a', 'a#', 'a', 'g', 'e', 'c2:2', 'e', 'g', 'a', 'a#', 'a', 'g', 'e', 'f', 'a', 'c3', 'd', 'd#', 'd', 'c',
'a2', 'c2:2', 'e', 'g', 'a', 'a#', 'a', 'g', 'e', 'g', 'b', 'd3', 'f', 'f2', 'a', 'c3', 'd#', 'c2:2', 'e', 'g', 'e', 'g', 'f', 'e', 'd']
BIRTHDAY = ['c4:4', 'c:1', 'd:4', 'c:4', 'f', 'e:8', 'c:3', 'c:1', 'd:4', 'c:4', 'g',
'f:8', 'c:3', 'c:1', 'c5:4', 'a4', 'f', 'e', 'd', 'a#:3', 'a#:1', 'a:4', 'f', 'g', 'f:8']
WEDDING = ['c4:4', 'f:3', 'f:1', 'f:8', 'c:4', 'g:3', 'e:1', 'f:8',
'c:4', 'f:3', 'a:1', 'c5:4', 'a4:3', 'f:1', 'f:4', 'e:3', 'f:1', 'g:8']
FUNERAL = ['c3:4', 'c:3', 'c:1', 'c:4', 'd#:3',
'd:1', 'd:3', 'c:1', 'c:3', 'b2:1', 'c3:4']
PUNCHLINE = ['c4:3', 'g3:1', 'f#', 'g', 'g#:3', 'g', 'r', 'b', 'c4']
PYTHON = ['d5:1', 'b4', 'r', 'b', 'b', 'a#', 'b', 'g5', 'r', 'd', 'd', 'r', 'b4', 'c5', 'r', 'c', 'c', 'r', 'd', 'e:5', 'c:1', 'a4', 'r', 'a', 'a', 'g#', 'a', 'f#5', 'r', 'e', 'e', 'r', 'c', 'b4', 'r', 'b', 'b', 'r', 'c5', 'd:5',
'd:1', 'b4', 'r', 'b', 'b', 'a#', 'b', 'b5', 'r', 'g', 'g', 'r', 'd', 'c#', 'r', 'a', 'a', 'r', 'a', 'a:5', 'g:1', 'f#:2', 'a:1', 'a', 'g#', 'a', 'e:2', 'a:1', 'a', 'g#', 'a', 'd', 'r', 'c#', 'd', 'r', 'c#', 'd:2', 'r:3']
BADDY = ['c3:3', 'r', 'd:2', 'd#', 'r', 'c', 'r', 'f#:8']
CHASE = ['a4:1', 'b', 'c5', 'b4', 'a:2', 'r', 'a:1', 'b', 'c5', 'b4', 'a:2', 'r', 'a:2', 'e5', 'd#', 'e', 'f', 'e', 'd#',
'e', 'b4:1', 'c5', 'd', 'c', 'b4:2', 'r', 'b:1', 'c5', 'd', 'c', 'b4:2', 'r', 'b:2', 'e5', 'd#', 'e', 'f', 'e', 'd#', 'e']
BA_DING = ['b5:1', 'e6:3']
WAWAWAWAA = ['e3:3', 'r:1', 'd#:3', 'r:1', 'd:4', 'r:1', 'c#:8']
JUMP_UP = ['c5:1', 'd', 'e', 'f', 'g']
JUMP_DOWN = ['g5:1', 'f', 'e', 'd', 'c']
POWER_UP = ['g4:1', 'c5', 'e4', 'g5:2', 'e5:1', 'g5:3']
POWER_DOWN = ['g5:1', 'd#', 'c', 'g4:2', 'b:1', 'c5:3']

View File

@@ -0,0 +1,112 @@
"""
NOVA_G1
Micropython library for the NOVA_G1(PWM*6, IO*2, ADC*1)
=======================================================
#Preliminary composition 20240222
@dahanzimin From the Mixly Team
"""
from micropython import const
from mixgo_nova import onboard_i2c
_NOVA_G1_ADDRESS = const(0x25)
_NOVA_G1_ID = const(0x00)
_NOVA_G1_ADC = const(0x01)
_NOVA_G1_IO = const(0x03)
_NOVA_G1_PWM = const(0x04)
class NOVA_G1:
def __init__(self, i2c_bus, addr=_NOVA_G1_ADDRESS):
self._i2c = i2c_bus
self._addr = addr
if self._rreg(_NOVA_G1_ID) != 0x25:
raise AttributeError("Cannot find a NOVA_G1")
self.reset()
def _wreg(self, reg, val):
'''Write memory address'''
try:
self._i2c.writeto_mem(self._addr, reg, val.to_bytes(1, 'little'))
except:
return 0
def _rreg(self, reg, nbytes=1):
'''Read memory address'''
try:
self._i2c.writeto(self._addr, reg.to_bytes(1, 'little'))
return self._i2c.readfrom(self._addr, nbytes)[0] if nbytes <= 1 else self._i2c.readfrom(self._addr, nbytes)[0:nbytes]
except:
return 0
def reset(self):
"""Reset all registers to default state"""
for reg in range(_NOVA_G1_PWM, _NOVA_G1_PWM + 6):
self._wreg(reg, 0x00)
def varistor(self, ratio=100/1023):
'''Read battery power'''
_adc = self._rreg(_NOVA_G1_ADC) << 2 | self._rreg(_NOVA_G1_ADC+1) >> 6
return round(_adc * ratio)
def pwm(self, index, duty=None):
"""Motor*2*2 & USB*2 PWM duty cycle data register"""
if duty is None:
return self._rreg(_NOVA_G1_PWM + index)
else:
duty = min(255, max(0, duty))
self._wreg(_NOVA_G1_PWM + index, duty)
def motor(self, index, action, speed=0):
if not 0 <= index <= 1:
raise ValueError("Motor port must be a number in the range: 0~1")
speed = min(100, max(speed, -100))
if action == "N":
self.pwm(index * 2, 0)
self.pwm(index * 2 + 1, 0)
elif action == "P":
self.pwm(index * 2, 255)
self.pwm(index * 2 + 1, 255)
elif action == "CW":
if speed >= 0:
self.pwm(index * 2, 0)
self.pwm(index * 2 + 1, speed * 255 // 100)
else:
self.pwm(index * 2, 0)
self.pwm(index * 2 + 1, - speed * 255 // 100)
elif action == "CCW":
if speed >= 0:
self.pwm(index * 2, speed * 255 // 100)
self.pwm(index * 2 + 1, 0)
else:
self.pwm(index * 2, - speed * 255 // 100)
self.pwm(index * 2 + 1, 0)
elif action == "NC":
return round(self.pwm(index * 2) * 100 / 255), round(self.pwm(index * 2 + 1) * 100 / 255)
else:
raise ValueError('Invalid input, valid are "N","P","CW","CCW"')
def usb_pwm(self, index, duty=None):
if not 0 <= index <= 1:
raise ValueError("USB-2.0 port must be a number in the range: 0~1")
if duty is None:
return round((self.pwm(index + 4) * 100 / 255))
else:
self.pwm(index + 4, duty * 255 // 100)
def spk_en(self, onoff=True):
if onoff:
self._wreg(_NOVA_G1_IO, (self._rreg(_NOVA_G1_IO)) | 0x02)
else:
self._wreg(_NOVA_G1_IO, (self._rreg(_NOVA_G1_IO)) & 0xFD)
def ldo_en(self, onoff=True):
if onoff:
self._wreg(_NOVA_G1_IO, (self._rreg(_NOVA_G1_IO)) | 0x01)
else:
self._wreg(_NOVA_G1_IO, (self._rreg(_NOVA_G1_IO)) & 0xFE)
# Constructor
ext_g1 = NOVA_G1(onboard_i2c)

View File

@@ -0,0 +1,137 @@
"""
SANT_WCH
Micropython library for the SANT_WCH(--V1.8--)
=======================================================
@dahanzimin From the Mixly Team
"""
import time
from micropython import const
_BOT035_ADDRESS = const(0x13)
_BOT5_TOUCH = const(0x01)
_BOT035_ADC = const(0x05)
_BOT035_PWM = const(0x09)
_BOT035_LED = const(0x0F)
_BOT035_STA = const(0x12)
_BOT035_CMD = const(0x13)
_BOT035_RGB = const(0x14)
_BOT035_KB = const(0x20)
_BOT035_MS = const(0x24)
_BOT035_STR = const(0x28)
class BOT035:
def __init__(self, i2c_bus):
self._i2c = i2c_bus
self._touchs = [self.touch(0), self.touch(1)]
self.reset()
def _wreg(self, reg, val, digit=1):
'''Write memory address'''
self._i2c.writeto_mem(_BOT035_ADDRESS, reg, val.to_bytes(digit, 'little'))
def _rreg(self, reg, nbytes=1):
'''Read memory address'''
self._i2c.writeto(_BOT035_ADDRESS, reg.to_bytes(1, 'little'))
return int.from_bytes(self._i2c.readfrom(_BOT035_ADDRESS, nbytes), 'little')
def _bits(self, offset, mask, value=None, delay=100, reg=_BOT035_CMD):
if value is None:
return (self._rreg(reg) & mask) >> offset
else:
self._wreg(reg, (self._rreg(reg) & (~ mask & 0xFF)) | (value << offset))
time.sleep_ms(delay)
def reset(self):
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_PWM, b' Ndddd\x00\x00\x00\x8c\x20')
def key_adc(self):
return self._rreg(_BOT035_ADC, 2)
def touch(self, index, value=None):
index = max(min(index, 1), 0)
touch = 4095 - self._rreg(_BOT5_TOUCH + index * 2, 2)
return touch > value if value else touch
def touched(self, index, value=600):
return self.touch(index, value)
def touch_slide(self):
values = []
for i in range(20):
values.append((self.touch(1) - self._touchs[1]) - (self.touch(0) - self._touchs[0]))
return round(sorted(values)[10] / 10)
def usben(self, index=1, duty=None, freq=None):
index = max(min(index, 4), 1)
if duty is not None:
self._wreg(_BOT035_PWM + index + 1, int(max(min(duty, 100), 0)))
if freq is not None:
self._wreg(_BOT035_PWM, max(min(freq, 65535), 10), 2)
if freq is None and duty is None:
return self._rreg(_BOT035_PWM + index + 1), self._rreg(_BOT035_PWM ,2)
def tft_brightness(self, brightness=None):
if brightness is None:
return self._rreg(_BOT035_LED)
else:
self._wreg(_BOT035_LED, max(min(brightness, 100), 0))
def led_pwm(self, index=1, duty=None):
index = max(min(index, 2), 1)
if duty is None:
return self._rreg(_BOT035_LED + index)
else:
self._wreg(_BOT035_LED + index, max(min(duty, 100), 0))
def tft_reset(self, value=None, delay=50):
return self._bits(7, 0x80, value, delay)
def spk_en(self, value=None, delay=10):
return self._bits(6, 0x40, value, delay)
def cam_en(self, value=None, delay=500):
"""Convert to high level effective"""
value = value if value is None else ~ value & 0x01
return self._bits(5, 0x20, value, delay)
def cam_reset(self, value=None, delay=50):
return self._bits(4, 0x10, value, delay)
def asr_en(self, value=None, delay=700):
return self._bits(2, 0x0C, value, delay)
def uart_select(self, value=None, delay=50):
return self._bits(0, 0x03, value, delay)
def rgb_sync(self, buffer, n=12):
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_RGB, buffer if len(buffer) < n else buffer[:n])
def hid_keyboard(self, special=0, general=0, release=True):
self._buf = bytearray(4)
self._buf[0] = special
if type(general) in (tuple, list):
for i in range(len(general)):
if i > 2: break
self._buf[i + 1] = general[i]
else:
self._buf[1] = general
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_KB, self._buf)
if release:
time.sleep_ms(10)
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_KB, bytes(4))
def hid_keyboard_str(self, string, delay=0):
for char in str(string):
self._wreg(_BOT035_STR, ord(char) & 0xFF)
time.sleep_ms(20 + delay)
def hid_keyboard_state(self):
state = self._rreg(_BOT035_STA)
return bool(state & 0x10), bool(state & 0x20), bool(state & 0x40)
def hid_mouse(self, keys=0, move=(0, 0), wheel=0, release=True):
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_MS, bytes([keys & 0x0F, move[0] & 0xFF, move[1] & 0xFF, wheel & 0xFF]))
if release:
time.sleep_ms(10)
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_MS, bytes(4))

View File

@@ -0,0 +1,30 @@
"""
SANT G2 -MixGo SANT EXT G2
MicroPython library for the SANT G2 (Expansion board for MixGo SANT)
=======================================================
@dahanzimin From the Mixly Team
"""
import gc
from machine import Pin, SoftI2C
'''i2c-extboard'''
ext_i2c = SoftI2C(scl=Pin(5), sda=Pin(6), freq=400000)
'''RFID_Sensor'''
try :
import rc522
ext_rfid = rc522.RC522(ext_i2c)
except Exception as e:
print("Warning: Failed to communicate with SI522A (RFID) or",e)
'''RADAR_Sensor'''
try :
import cbr817
ext_mmw = cbr817.CBR817(ext_i2c)
except Exception as e:
print("Warning: Failed to communicate with CBR817 (RADAR) or",e)
'''Reclaim memory'''
gc.collect()

View File

@@ -0,0 +1,30 @@
"""
SANT GX -MixGo SANT EXT G3
MicroPython library for the SANT GX (Expansion board for MixGo SANT)
=======================================================
@dahanzimin From the Mixly Team
"""
import gc
from machine import Pin, SoftI2C
'''i2c-extboard'''
ext_i2c = SoftI2C(scl=Pin(18), sda=Pin(21), freq=400000)
'''RFID_Sensor'''
try :
import rc522
ext_rfid = rc522.RC522(ext_i2c)
except Exception as e:
print("Warning: Failed to communicate with SI522A (RFID) or",e)
'''RADAR_Sensor'''
try :
import cbr817
ext_mmw = cbr817.CBR817(ext_i2c)
except Exception as e:
print("Warning: Failed to communicate with CBR817 (RADAR) or",e)
'''Reclaim memory'''
gc.collect()

View File

@@ -0,0 +1,31 @@
"""
SANT-TTS
MicroPython library for the SANT-TTS(暂行)
=======================================================
@dahanzimin From the Mixly Team
"""
import gc
from esp_tts import TTS
from machine import Pin
from pwm_audio import PWMAudio
from mixgo_sant import onboard_bot
audio = PWMAudio(Pin(46))
tts = TTS()
def play(text, speed=3):
try:
onboard_bot.spk_en(1, 100)
if tts.parse_chinese(text):
audio.start()
while True:
data = tts.stream_play(speed)
if not data:
break
else:
audio.write(data)
finally:
onboard_bot.spk_en(0)
audio.stop()
gc.collect()

View File

@@ -0,0 +1,106 @@
"""
SOAR_WCH
Micropython library for the SOAR_WCH
=======================================================
@dahanzimin From the Mixly Team
"""
import time
from micropython import const
_BOT035_ADDRESS = const(0x13)
_BOT5_TOUCH = const(0x01)
_BOT035_ADC = const(0x05)
_BOT035_OPA = const(0x09)
_BOT035_PWM = const(0x0B)
_BOT035_CMD = const(0x11)
_BOT035_STA = const(0x12)
_BOT035_KB = const(0x13)
_BOT035_MS = const(0x17)
_BOT035_STR = const(0x1B)
class BOT035:
def __init__(self, i2c_bus):
self._i2c = i2c_bus
self._touchs = [self.touch(0), self.touch(1)]
self.reset()
def _wreg(self, reg, val, digit=1):
'''Write memory address'''
self._i2c.writeto_mem(_BOT035_ADDRESS, reg, val.to_bytes(digit, 'little'))
def _rreg(self, reg, nbytes=1):
'''Read memory address'''
self._i2c.writeto(_BOT035_ADDRESS, reg.to_bytes(1, 'little'))
return int.from_bytes(self._i2c.readfrom(_BOT035_ADDRESS, nbytes), 'little')
def reset(self):
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_PWM, b' Ndddd\xc0')
def touch(self, index, value=None):
index = max(min(index, 1), 0)
touch = 4095 - self._rreg(_BOT5_TOUCH + index * 2, 2)
return touch > value if value else touch
def touched(self, index, value=600):
return self.touch(index, value)
def touch_slide(self):
values = []
for i in range(20):
values.append((self.touch(1) - self._touchs[1]) - (self.touch(0) - self._touchs[0]))
return round(sorted(values)[10] / 10)
def brightness(self, index):
index = max(min(index, 1), 0)
return 4095 - self._rreg(_BOT035_ADC + index * 2, 2)
def amp_pga(self, k=1, b=155, pga=3, dp=0):
"""0:4x,1:8x,2:16x,3:32x"""
self._wreg(_BOT035_CMD, (self._rreg(_BOT035_CMD) & 0x3F) | (pga & 0x03) << 6)
return round((self._rreg(_BOT035_OPA, 2) * k - b) / (2 ** (pga + 2)), dp)
def usben(self, index=1, duty=None, freq=None):
index = max(min(index, 4), 1)
if duty is not None:
self._wreg(_BOT035_PWM + index + 1, int(max(min(duty, 100), 0)))
if freq is not None:
self._wreg(_BOT035_PWM, max(min(freq, 65535), 10), 2)
if freq is None and duty is None:
return self._rreg(_BOT035_PWM + index + 1), self._rreg(_BOT035_PWM ,2)
def tft_brightness(self, brightness=None):
if brightness is None:
return round((self._rreg(_BOT035_CMD) & 0x3F) * 1.587)
else:
brightness = round(brightness* 0.63)
self._wreg(_BOT035_CMD, (self._rreg(_BOT035_CMD) & 0xC0) | max(min(brightness, 63), 0))
def hid_keyboard(self, special=0, general=0, release=True):
self._buf = bytearray(4)
self._buf[0] = special
if type(general) in (tuple, list):
for i in range(len(general)):
if i > 2: break
self._buf[i + 1] = general[i]
else:
self._buf[1] = general
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_KB, self._buf)
if release:
time.sleep_ms(10)
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_KB, bytes(4))
def hid_keyboard_str(self, string, delay=0):
for char in str(string):
self._wreg(_BOT035_STR, ord(char) & 0xFF)
time.sleep_ms(20 + delay)
def hid_keyboard_state(self):
state = self._rreg(_BOT035_STA)
return bool(state & 0x10), bool(state & 0x20), bool(state & 0x40)
def hid_mouse(self, keys=0, move=(0, 0), wheel=0, release=True):
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_MS, bytes([keys & 0x0F, move[0] & 0xFF, move[1] & 0xFF, wheel & 0xFF]))
if release:
time.sleep_ms(10)
self._i2c.writeto_mem(_BOT035_ADDRESS, _BOT035_MS, bytes(4))

View File

@@ -0,0 +1,103 @@
"""
ST7789/FrameBuffer
MicroPython library for the ST7789(TFT-SPI)
=======================================================
@dahanzimin From the Mixly Team
"""
import time
import uframebuf
from machine import Pin, PWM
class ST7789(uframebuf.FrameBuffer_Uincode):
def __init__(self, spi, width, height, dc_pin=None, cs_pin=None, bl_pin=None, brightness=0.6, font_address=0x700000):
self.spi = spi
self.dc = Pin(dc_pin, Pin.OUT, value=1)
self.cs = Pin(cs_pin, Pin.OUT, value=1)
self._buffer = bytearray(width * height * 2)
super().__init__(self._buffer, width, height, uframebuf.RGB565)
self.font(font_address)
self._init()
# self.show()
self.bl_led = bl_pin if callable(bl_pin) else PWM(Pin(bl_pin))
self._oneclight = True
self._brightness = brightness
def _write(self, cmd, dat=None):
self.cs.off()
self.dc.off()
self.spi.write(bytearray([cmd]))
self.cs.on()
if dat is not None:
self.cs.off()
self.dc.on()
self.spi.write(dat)
self.cs.on()
def _init(self):
"""Display initialization configuration"""
for cmd, data, delay in [
(0x11, None, 120000),
(0x36, b'\x00', 10),
(0x3A, b'\x05', 10),
(0xB2, b'\x1F\x1F\x00\x33\x33', 10),
(0xB7, b'\x00', 10),
(0xBB, b'\x3F', 10),
(0xC0, b'\x2C', 10),
(0xC2, b'\x01', 10),
(0xC3, b'\x0F', 10),
(0xC4, b'\x20', 10),
(0xC6, b'\x13', 10),
(0xD0, b'\xA4\xA1', 10),
(0xD6, b'\xA1', 10),
(0xE0, b'\xF0\x06\x0D\x0B\x0A\x07\x2E\x43\x45\x38\x14\x13\x25\x29', 10),
(0xE1, b'\xF0\x07\x0A\x08\x07\x23\x2E\x33\x44\x3A\x16\x17\x26\x2C', 10),
(0xE4, b'\x1D\x00\x00', 10),
(0x21, None, 10),
(0x29, None, 10),
]:
self._write(cmd, data)
if delay:
time.sleep_us(delay)
def _write(self, command=None, data=None):
"""SPI write to the device: commands and data."""
if command is not None:
self.cs.off()
self.dc.off()
self.spi.write(bytes([command]))
self.cs.on()
if data is not None:
self.cs.off()
self.dc.on()
self.spi.write(data)
self.cs.on()
def get_brightness(self):
return self._brightness
def set_brightness(self, brightness):
if not 0.0 <= brightness <= 1.0:
raise ValueError(
"Brightness must be a decimal number in the range: 0.0~1.0")
self._brightness = brightness
if callable(self.bl_led):
self.bl_led(brightness * 100)
elif isinstance(self.bl_led, PWM):
self.bl_led.duty_u16(int(brightness * 60000))
def color(self, red, green=None, blue=None):
""" Convert red, green and blue values (0-255) into a 16-bit 565 encoding."""
if green is None or blue is None:
return red
else:
return (red & 0xf8) << 8 | (green & 0xfc) << 3 | blue >> 3
def show(self):
"""Refresh the display and show the changes."""
if self._oneclight:
self.set_brightness(self._brightness)
self._oneclight = False
self._write(0x2A, b'\x00\x00\x00\xef')
self._write(0x2B, b'\x00\x00\x00\xef')
self._write(0x2C, self._buffer)

View File

@@ -0,0 +1,95 @@
"""
ST7789/FrameBuffer
MicroPython library for the ST7789(TFT-SPI)
=======================================================
@dahanzimin From the Mixly Team
"""
import time
import uframebuf
from machine import Pin
from camera import Image, IMG
class ST7789(uframebuf.FrameBuffer_Uincode):
def __init__(self, spi, width, height, dc_pin=None, backlight=None, reset=None, font_address=0x700000):
self.spi = spi
self.dc = Pin(dc_pin, Pin.OUT, value=1)
self._buffer = bytearray(width * height * 2)
super().__init__(self._buffer, width, height, uframebuf.RGB565)
if reset: reset(1, 100)
self.font(font_address)
self._init()
# self.show()
self._oneclight = True
self._backlight = backlight
def display(self, data=None, x=None, y=None, scale_width=None, scale_height=None, rotation=0, sync=True):
if type(data) is str:
data = Image.open(data, scale_width, scale_height, self.width, self.height, rotation=rotation)
if sync: self.fill(0x0, sync=False)
self.blit_rgb565(data.image, data.width, data.height, x, y)
if sync: self.show()
def screenshot(self, x=0, y=0, w=None, h=None):
if (w is None and h is None):
return IMG(memoryview(self._buffer), self.width, self.height)
else:
return IMG(memoryview(self.crop_rgb565(x,y,w,h)), w, h)
def _write(self, cmd, dat=None):
self.dc.off()
self.spi.write(bytearray([cmd]))
if dat is not None:
self.dc.on()
self.spi.write(dat)
def _init(self):
"""Display initialization configuration"""
for cmd, data, delay in [
(0x11, None, 120000),
(0x36, b'\x00', 50),
(0x3A, b'\x05', 50),
(0xB2, b'\x1F\x1F\x00\x33\x33', 10),
(0xB7, b'\x00', 10),
(0xBB, b'\x36', 10),
(0xC0, b'\x2C', 10),
(0xC2, b'\x01', 10),
(0xC3, b'\x13', 10),
(0xC4, b'\x20', 10),
(0xC6, b'\x13', 10),
(0xD0, b'\xA4\xA1', 10),
(0xD6, b'\xA1', 10),
(0xE0, b'\xF0\x08\x0E\x09\x08\x04\x2F\x33\x45\x36\x13\x12\x2A\x2D', 10),
(0xE1, b'\xF0\x0E\x12\x0C\x0A\x15\x2E\x32\x44\x39\x17\x18\x2B\x2F', 10),
(0xE4, b'\x1D\x00\x00', 10),
(0x21, None, 10),
(0x29, None, 10),
]:
self._write(cmd, data)
if delay:
time.sleep_us(delay)
def get_brightness(self):
return self._backlight() / 100
def set_brightness(self, brightness):
if not 0.0 <= brightness <= 1.0:
raise ValueError(
"Brightness must be a decimal number in the range: 0.0~1.0")
self._backlight(int(brightness * 100))
def color(self, red, green=None, blue=None):
""" Convert red, green and blue values (0-255) into a 16-bit 565 encoding."""
if green is None or blue is None:
return red
else:
return (red & 0xf8) << 8 | (green & 0xfc) << 3 | blue >> 3
def show(self):
"""Refresh the display and show the changes."""
if self._oneclight:
self.set_brightness(0.6)
self._oneclight = False
self._write(0x2A, b'\x00\x00\x00\xef')
self._write(0x2B, b'\x00\x00\x00\xef')
self._write(0x2C, self._buffer)

View File

@@ -0,0 +1,67 @@
"""
WS2812 RGB(x035)
Micropython library for the WS2812 NeoPixel-RGB(method inheritance)
=======================================================
@dahanzimin From the Mixly Team
"""
from time import sleep
class NeoPixel:
def __init__(self, func, n, bpp=3, ORDER=(0, 1, 2, 3)):
self.func = func
self.bpp = bpp
self.rgbs = n
self.ORDER = ORDER
self.rgb_buf = bytearray(self.rgbs * bpp)
self.write()
def __len__(self):
return self.rgbs
def __setitem__(self, n, v):
for i in range(self.bpp):
self.rgb_buf[n * self.bpp + self.ORDER[i]] = v[i]
def __getitem__(self, n):
return tuple(self.rgb_buf[n * self.bpp + self.ORDER[i]] for i in range(self.bpp))
def fill(self, v):
for i in range(self.bpp):
j = self.ORDER[i]
while j < self.rgbs * self.bpp:
self.rgb_buf[j] = v[i]
j += self.bpp
def write(self):
self.func(self.rgb_buf)
def color_chase(self, R, G, B, wait):
for i in range(self.rgbs):
self.__setitem__(i, (R, G, B))
self.write()
sleep(wait/1000)
def rainbow_cycle(self, wait, clear=True):
for j in range(255):
for i in range(self.rgbs):
rc_index = (i * 256 // self.rgbs) + j
self.__setitem__(i, self.wheel(rc_index & 255))
self.write()
sleep(wait / 1000 / 256)
if clear:
self.fill((0, 0, 0))
self.write()
def wheel(self, pos):
if pos < 0 or pos > 255:
return (0, 0, 0)
elif pos < 85:
return (pos * 3, 255 - pos * 3, 0)
elif pos < 170:
pos -= 85
return (255 - pos * 3, 0, pos * 3)
else:
pos -= 170
return (0, pos * 3, 255 - pos * 3)