148 lines
5.8 KiB
C++
148 lines
5.8 KiB
C++
/*
|
|
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
|
|
*/
|
|
|
|
|
|
/**
|
|
* Example for efficient call-response using ack-payloads
|
|
*
|
|
* This example continues to make use of all the normal functionality of the radios including
|
|
* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
|
|
* This allows very fast call-response communication, with the responding radio never having to
|
|
* switch out of Primary Receiver mode to send back a payload, but having the option to switch to
|
|
* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
|
|
*/
|
|
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unistd.h>
|
|
#include <RF24/RF24.h>
|
|
|
|
using namespace std;
|
|
|
|
//
|
|
// Hardware configuration
|
|
// Configure the appropriate pins for your connections
|
|
|
|
/****************** Linux ***********************/
|
|
// Radio CE Pin, CSN Pin, SPI Speed
|
|
// CE Pin uses GPIO number with BCM and SPIDEV drivers, other platforms use their own pin numbering
|
|
// CS Pin addresses the SPI bus number at /dev/spidev<a>.<b>
|
|
// ie: RF24 radio(<ce_pin>, <a>*10+<b>); spidev1.0 is 10, spidev1.1 is 11 etc..
|
|
|
|
// Generic:
|
|
RF24 radio(22,0);
|
|
|
|
/****************** Linux (BBB,x86,etc) ***********************/
|
|
// See http://tmrh20.github.io/RF24/pages.html for more information on usage
|
|
// See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
|
|
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
|
|
|
|
/********** User Config *********/
|
|
// Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default.
|
|
bool radioNumber = 1;
|
|
|
|
/********************************/
|
|
|
|
|
|
// Radio pipe addresses for the 2 nodes to communicate.
|
|
const uint8_t addresses[][6] = {"1Node", "2Node"};
|
|
|
|
bool role_ping_out = 1, role_pong_back = 0, role = 0;
|
|
uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
|
|
cout << "RPi/RF24/examples/gettingstarted_call_response\n";
|
|
radio.begin();
|
|
radio.enableAckPayload(); // Allow optional ack payloads
|
|
radio.enableDynamicPayloads();
|
|
radio.printDetails(); // Dump the configuration of the rf unit for debugging
|
|
|
|
|
|
/********* Role chooser ***********/
|
|
|
|
printf("\n ************ Role Setup ***********\n");
|
|
string input = "";
|
|
char myChar = {0};
|
|
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>";
|
|
getline(cin, input);
|
|
|
|
if (input.length() == 1) {
|
|
myChar = input[0];
|
|
if (myChar == '0') {
|
|
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
|
|
} else {
|
|
cout << "Role: Ping Out, starting transmission " << endl << endl;
|
|
role = role_ping_out;
|
|
}
|
|
}
|
|
/***********************************/
|
|
// This opens two pipes for these two nodes to communicate
|
|
// back and forth.
|
|
if (!radioNumber) {
|
|
radio.openWritingPipe(addresses[0]);
|
|
radio.openReadingPipe(1, addresses[1]);
|
|
} else {
|
|
radio.openWritingPipe(addresses[1]);
|
|
radio.openReadingPipe(1, addresses[0]);
|
|
}
|
|
radio.startListening();
|
|
radio.writeAckPayload(1, &counter, 1);
|
|
|
|
// forever loop
|
|
while (1) {
|
|
|
|
|
|
/****************** Ping Out Role ***************************/
|
|
|
|
if (role == role_ping_out) { // Radio is in ping mode
|
|
|
|
uint8_t gotByte; // Initialize a variable for the incoming response
|
|
|
|
radio.stopListening(); // First, stop listening so we can talk.
|
|
printf("Now sending %d as payload. ", counter); // Use a simple byte counter as payload
|
|
unsigned long time = millis(); // Record the current microsecond count
|
|
|
|
if (radio.write(&counter, 1)) { // Send the counter variable to the other radio
|
|
if (!radio.available()) { // If nothing in the buffer, we got an ack but it is blank
|
|
printf("Got blank response. round-trip delay: %lu ms\n\r", millis() - time);
|
|
} else {
|
|
while (radio.available()) { // If an ack with payload was received
|
|
radio.read(&gotByte, 1); // Read it, and display the response time
|
|
printf("Got response %d, round-trip delay: %lu ms\n\r", gotByte, millis() - time);
|
|
counter++; // Increment the counter variable
|
|
}
|
|
}
|
|
|
|
} else {
|
|
printf("Sending failed.\n\r");
|
|
} // If no ack response, sending failed
|
|
|
|
sleep(1); // Try again later
|
|
}
|
|
|
|
/****************** Pong Back Role ***************************/
|
|
|
|
if (role == role_pong_back) {
|
|
uint8_t pipeNo, gotByte; // Declare variables for the pipe and the byte received
|
|
if (radio.available(&pipeNo)) { // Read all available payloads
|
|
radio.read(&gotByte, 1);
|
|
// Since this is a call-response. Respond directly with an ack payload.
|
|
gotByte += 1; // Ack payloads are much more efficient than switching to transmit mode to respond to a call
|
|
radio.writeAckPayload(pipeNo, &gotByte, 1); // This can be commented out to send empty payloads.
|
|
printf("Loaded next response %d \n\r", gotByte);
|
|
delay(900); //Delay after a response to minimize CPU usage on RPi
|
|
//Expects a payload every second
|
|
}
|
|
}
|
|
|
|
} //while 1
|
|
} //main
|
|
|
|
|