#include "Matrix.h" uint8_t const I2C_READ = 1; uint8_t const I2C_WRITE = 0; uint8_t const I2C_DELAY_USEC = 4; Matrix::Matrix(uint8_t sda_port,uint8_t scl_port) { SCL_pin = scl_port; SDA_pin = sda_port; } void Matrix::setBrightness(uint8_t b) { if (b > 15) b = 15; IICstart(i2c_addr | I2C_WRITE); IICwrite(0xE0 | b); IICstop(); } void Matrix::blinkRate(uint8_t b) { IICstart(i2c_addr | I2C_WRITE); if (b > 3) b = 0; // turn off if not sure IICwrite(HT16K33_BLINK_CMD | HT16K33_BLINK_DISPLAYON | (b << 1)); IICstop(); } void Matrix::begin(uint8_t _addr = 0x70) { IICbegin(SDA_pin,SCL_pin); constructor(8, 8); i2c_addr = _addr; i2c_addr <<= 1; IICstart(i2c_addr | I2C_WRITE); IICwrite(0x21); // turn on oscillator IICstop(); blinkRate(HT16K33_BLINK_OFF); setBrightness(15); // max brightness } void Matrix::write(void) { IICstart(i2c_addr | I2C_WRITE); IICwrite((uint8_t)0x00); // start at address $00 for (uint8_t i=0; i<8; i++) { IICwrite(displaybuffer[i] & 0xFF); IICwrite(displaybuffer[i] >> 8); } IICstop(); } void Matrix::clear(void) { for (uint8_t i=0; i<8; i++) { displaybuffer[i] = 0; } } void Matrix::fillScreen(uint16_t color){ fillRect(0, 0, _width, _height, color); } void Matrix::drawPixel(int16_t x, int16_t y, uint16_t color) { if ((y < 0) || (y >= 8)) return; if ((x < 0) || (x >= 8)) return; switch (getRotation()) { case 1: matrix_swap(x, y); x = 8 - x - 1; break; case 2: x = 8 - x - 1; y = 8 - y - 1; break; case 3: matrix_swap(x, y); y = 8 - y - 1; break; } if (color) { displaybuffer[y] |= 1 << x; } else { displaybuffer[y] &= ~(1 << x) & ~(1 << (x+8)); } } void Matrix::constructor(int16_t w, int16_t h) { _width = WIDTH = w; _height = HEIGHT = h; rotation = 0; cursor_y = cursor_x = 0; textsize = 1; textcolor = textbgcolor = 0xFFFF; wrap = true; } // draw a circle outline void Matrix::drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; drawPixel(x0, y0+r, color); drawPixel(x0, y0-r, color); drawPixel(x0+r, y0, color); drawPixel(x0-r, y0, color); while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; drawPixel(x0 + x, y0 + y, color); drawPixel(x0 - x, y0 + y, color); drawPixel(x0 + x, y0 - y, color); drawPixel(x0 - x, y0 - y, color); drawPixel(x0 + y, y0 + x, color); drawPixel(x0 - y, y0 + x, color); drawPixel(x0 + y, y0 - x, color); drawPixel(x0 - y, y0 - x, color); } } void Matrix::drawCircleHelper( int16_t x0, int16_t y0, int16_t r, uint8_t cornername, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x4) { drawPixel(x0 + x, y0 + y, color); drawPixel(x0 + y, y0 + x, color); } if (cornername & 0x2) { drawPixel(x0 + x, y0 - y, color); drawPixel(x0 + y, y0 - x, color); } if (cornername & 0x8) { drawPixel(x0 - y, y0 + x, color); drawPixel(x0 - x, y0 + y, color); } if (cornername & 0x1) { drawPixel(x0 - y, y0 - x, color); drawPixel(x0 - x, y0 - y, color); } } } void Matrix::fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color) { drawFastVLine(x0, y0-r, 2*r+1, color); fillCircleHelper(x0, y0, r, 3, 0, color); } // used to do circles and roundrects! void Matrix::fillCircleHelper(int16_t x0, int16_t y0, int16_t r, uint8_t cornername, int16_t delta, uint16_t color) { int16_t f = 1 - r; int16_t ddF_x = 1; int16_t ddF_y = -2 * r; int16_t x = 0; int16_t y = r; while (x= 0) { y--; ddF_y += 2; f += ddF_y; } x++; ddF_x += 2; f += ddF_x; if (cornername & 0x1) { drawFastVLine(x0+x, y0-y, 2*y+1+delta, color); drawFastVLine(x0+y, y0-x, 2*x+1+delta, color); } if (cornername & 0x2) { drawFastVLine(x0-x, y0-y, 2*y+1+delta, color); drawFastVLine(x0-y, y0-x, 2*x+1+delta, color); } } } // bresenham's algorithm - thx wikpedia void Matrix::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint16_t color) { int16_t steep = abs(y1 - y0) > abs(x1 - x0); if (steep) { matrix_swap(x0, y0); matrix_swap(x1, y1); } if (x0 > x1) { matrix_swap(x0, x1); matrix_swap(y0, y1); } int16_t dx, dy; dx = x1 - x0; dy = abs(y1 - y0); int16_t err = dx / 2; int16_t ystep; if (y0 < y1) { ystep = 1; } else { ystep = -1; } for (; x0<=x1; x0++) { if (steep) { drawPixel(y0, x0, color); } else { drawPixel(x0, y0, color); } err -= dy; if (err < 0) { y0 += ystep; err += dx; } } } // draw a rectangle void Matrix::drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { drawFastHLine(x, y, w, color); drawFastHLine(x, y+h-1, w, color); drawFastVLine(x, y, h, color); drawFastVLine(x+w-1, y, h, color); } void Matrix::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { // stupidest version - update in subclasses if desired! drawLine(x, y, x, y+h-1, color); } void Matrix::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { // stupidest version - update in subclasses if desired! drawLine(x, y, x+w-1, y, color); } void Matrix::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color) { // stupidest version - update in subclasses if desired! for (int16_t i=x; i= y1 >= y0) if (y0 > y1) { matrix_swap(y0, y1); matrix_swap(x0, x1); } if (y1 > y2) { matrix_swap(y2, y1); matrix_swap(x2, x1); } if (y0 > y1) { matrix_swap(y0, y1); matrix_swap(x0, x1); } if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing a = b = x0; if(x1 < a) a = x1; else if(x1 > b) b = x1; if(x2 < a) a = x2; else if(x2 > b) b = x2; drawFastHLine(a, y0, b-a+1, color); return; } int16_t dx01 = x1 - x0, dy01 = y1 - y0, dx02 = x2 - x0, dy02 = y2 - y0, dx12 = x2 - x1, dy12 = y2 - y1, sa = 0, sb = 0; // For upper part of triangle, find scanline crossings for segments // 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1 // is included here (and second loop will be skipped, avoiding a /0 // error there), otherwise scanline y1 is skipped here and handled // in the second loop...which also avoids a /0 error here if y0=y1 // (flat-topped triangle). if(y1 == y2) last = y1; // Include y1 scanline else last = y1-1; // Skip it for(y=y0; y<=last; y++) { a = x0 + sa / dy01; b = x0 + sb / dy02; sa += dx01; sb += dx02; /* longhand: a = x0 + (x1 - x0) * (y - y0) / (y1 - y0); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) matrix_swap(a,b); drawFastHLine(a, y, b-a+1, color); } // For lower part of triangle, find scanline crossings for segments // 0-2 and 1-2. This loop is skipped if y1=y2. sa = dx12 * (y - y1); sb = dx02 * (y - y0); for(; y<=y2; y++) { a = x1 + sa / dy12; b = x0 + sb / dy02; sa += dx12; sb += dx02; /* longhand: a = x1 + (x2 - x1) * (y - y1) / (y2 - y1); b = x0 + (x2 - x0) * (y - y0) / (y2 - y0); */ if(a > b) matrix_swap(a,b); drawFastHLine(a, y, b-a+1, color); } } void Matrix::scrollMessage(String s,int displayScrollSpeed){ int a = s.length(); setTextSize(1); setTextWrap(false); // we dont want text to wrap so it scrolls nicely setTextColor(MATRIX_LED_ON); for (int8_t x=7; x>=-a*6; x--) { clear(); setCursor(x,0); print(s); write(); delay(displayScrollSpeed); } } void Matrix::scrollMessage(int num,int displayScrollSpeed){ String s = String("") + num; s += ""; int a = s.length(); setTextSize(1); setTextWrap(false); // we dont want text to wrap so it scrolls nicely setTextColor(MATRIX_LED_ON); for (int8_t x=7; x>=-a*6; x--) { clear(); setCursor(x,0); print(s); write(); delay(displayScrollSpeed); } } void Matrix::scrollMessage(float num,int displayScrollSpeed){ String s = String("") + num; s += ""; int a = s.length(); setTextSize(1); setTextWrap(false); // we dont want text to wrap so it scrolls nicely setTextColor(MATRIX_LED_ON); for (int8_t x=7; x>=-a*6; x--) { clear(); setCursor(x,0); print(s); write(); delay(displayScrollSpeed); } } size_t Matrix::write(uint8_t c) { if (c == '\n') { cursor_y += textsize*8; cursor_x = 0; } else if (c == '\r') { // skip em } else { drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize); cursor_x += textsize*6; if (wrap && (cursor_x > (_width - textsize*6))) { cursor_y += textsize*8; cursor_x = 0; } } #if ARDUINO >= 100 return 1; #endif } // draw a character void Matrix::drawChar(int16_t x, int16_t y, unsigned char c, uint16_t color, uint16_t bg, uint8_t size) { if((x >= _width) || // Clip right (y >= _height) || // Clip bottom ((x + 5 * size - 1) < 0) || // Clip left ((y + 8 * size - 1) < 0)) // Clip top return; for (int8_t i=0; i<6; i++ ) { uint8_t line; if (i == 5) line = 0x0; else line = pgm_read_byte(font+(c*5)+i); for (int8_t j = 7; j>=0; j--) { if (line & 0x1) { if (size == 1) // default size drawPixel(x+i, y+j, color); else { // big size fillRect(x+(i*size), y+(j*size), size, size, color); } } else if (bg != color) { if (size == 1) // default size drawPixel(x+i, y+j, bg); else { // big size fillRect(x+i*size, y+j*size, size, size, bg); } } line >>= 1; } } } void Matrix::setCursor(int16_t x, int16_t y) { cursor_x = x; cursor_y = y; } void Matrix::setTextSize(uint8_t s) { textsize = (s > 0) ? s : 1; } void Matrix::setTextColor(uint16_t c) { textcolor = c; textbgcolor = c; // for 'transparent' background, we'll set the bg // to the same as fg instead of using a flag } void Matrix::setTextColor(uint16_t c, uint16_t b) { textcolor = c; textbgcolor = b; } void Matrix::setTextWrap(boolean w) { wrap = w; } uint8_t Matrix::getRotation(void) { rotation %= 4; return rotation; } void Matrix::setRotation(uint8_t x) { x %= 4; // cant be higher than 3 rotation = x; switch (x) { case 0: case 2: _width = WIDTH; _height = HEIGHT; break; case 1: case 3: _width = HEIGHT; _height = WIDTH; break; } } void Matrix::invertDisplay(boolean i) { // do nothing, can be subclassed } // return the size of the display which depends on the rotation! int16_t Matrix::width(void) { return _width; } int16_t Matrix::height(void) { return _height; } void Matrix::IICbegin(uint8_t sdapin,uint8_t sclpin) { SDA_pin = sdapin; pinMode(SDA_pin,OUTPUT); digitalWrite(SDA_pin,HIGH); SCL_pin = sclpin; pinMode(SCL_pin,OUTPUT); digitalWrite(SCL_pin,HIGH); } bool Matrix::IICstart(uint8_t addr) { digitalWrite(SDA_pin, LOW); delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SCL_pin, LOW); return IICwrite(addr); } bool Matrix::IICrestart(uint8_t addr) { digitalWrite(SDA_pin, HIGH); digitalWrite(SCL_pin, HIGH); delayMicroseconds(I2C_DELAY_USEC); return IICstart(addr); } void Matrix::IICstop() { digitalWrite(SDA_pin,LOW); delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SCL_pin,HIGH); delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SDA_pin,HIGH); delayMicroseconds(I2C_DELAY_USEC); } uint8_t Matrix::IICread(uint8_t last) { uint8_t b = 0; // make sure pull-up enabled digitalWrite(SDA_pin, HIGH); pinMode(SDA_pin, INPUT); // read byte for (uint8_t i = 0; i < 8; i++) { // don't change this loop unless you verify the change with a scope b <<= 1; delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SCL_pin, HIGH); if (digitalRead(SDA_pin)) {b |= 1;} //else b &= 0; digitalWrite(SCL_pin, LOW); } // send Ack or Nak pinMode(SDA_pin, OUTPUT); digitalWrite(SDA_pin, last); digitalWrite(SCL_pin, HIGH); delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SCL_pin, LOW); digitalWrite(SDA_pin, LOW); return b; } //------------------------------------------------------------------------------ /** * Write a byte. * * \param[in] data The byte to send. * * \return The value true, 1, if the slave returned an Ack or false for Nak. */ bool Matrix::IICwrite(uint8_t data) { // write byte for (uint8_t m = 0X80; m != 0; m >>= 1) { // don't change this loop unless you verify the change with a scope digitalWrite(SDA_pin, m & data); digitalWrite(SCL_pin, HIGH); delayMicroseconds(I2C_DELAY_USEC); digitalWrite(SCL_pin, LOW); } // get Ack or Nak pinMode(SDA_pin, INPUT); // enable pullup digitalWrite(SDA_pin, HIGH); digitalWrite(SCL_pin, HIGH); uint8_t rtn = digitalRead(SDA_pin); digitalWrite(SCL_pin, LOW); pinMode(SDA_pin, OUTPUT); digitalWrite(SDA_pin, LOW); return rtn == 0; }