初始化提交

This commit is contained in:
王立帮
2024-07-20 22:09:06 +08:00
commit c247dd07a6
6876 changed files with 2743096 additions and 0 deletions

View File

@@ -0,0 +1,969 @@
/*****************************************************************************/
/* SCOOP LIBRARY / AUTHOR FABRICE OUDERT / GNU GPL V3 */
/* https://code.google.com/p/arduino-scoop-cooperative-scheduler-arm-avr/ */
/* VERSION 1.2 NEW YEAR PACK 10/1/2013 */
/* ENJOY AND USE AT YOUR OWN RISK :) */
/* SHOULD READ USER GUIDE FIRST (@\_/@) */
/*****************************************************************************/
#include "SCoop.h"
#define SCINM SCoopInstanceNickName
/********* GLOBAL VARIABLE *******/
SCoopEvent* SCoopFirstItem = NULL; // has to be initialized here. hold a pointer on the whole list of task/event/timer...
SCoopEvent* SCoopFirstTaskItem = NULL; // has to be initialized here. points to the first of all tasks registered in the list
uint8_t SCoopNumberTask = 0; // hold the number of task registered. used to calculate quantum in start(xxx)
SCoop SCoopInstanceNickName; // then we can use the library in the main sketch directly
#define SCINM SCoopInstanceNickName // just a local nickname...
#if SCoopANDROIDMODE >= 1
SCoop& ArduinoSchedulerNickName = SCINM; // this will create another identifier for the same object instance
#endif
/********* ASSEMBLY / LETS GET STARTED WITH THE COMPLEX THINGS **********/
// original idea for switching stack pointer taken out from ChibiOS.
// Credit to the author. now slightly modified.
// http://forum.pjrc.com/threads/540-ChibiOS-RTand-FreeRTOS-for-Teensy-3-0
//
// original idea for micros() optimization taken from CORE_TEENSY
// credit to Paul http://www.pjrc.com/teensy/
//************************************************************************/
#if defined(SCoop_ARM) && (SCoop_ARM == 1)
static void SCoopSwitch(uint8_t **newSP, uint8_t **oldSP) __attribute__((naked,noinline)) ;
static void SCoopSwitch(uint8_t **newSP, uint8_t **oldSP)
{ asm volatile ("push {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}" : : : "memory");
asm volatile ("str sp, [%[oldsp], #0] \n\t"
"ldr sp, [%[newsp], #0]" : : [newsp] "r" (newSP), [oldsp] "r" (oldSP));
asm volatile ("pop {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}" : : : "memory");
};
static inline uint32_t SCoopGetSP() __attribute__ ((always_inline)) ;
uint32_t SCoopGetSP() { register uint32_t val; asm ("mov %[temp],sp" : [temp] "=r" (val)); return val; }
#define ARM_ATOMIC ASM_ATOMIC
#define AVR_ATOMIC
#define SCoopMicros() ((micros_t)micros()) // overloading the standard micros()
#endif
#if defined(SCoop_AVR) && (SCoop_AVR == 1)
static void SCoopSwitch(void *newSP, void *oldSP) __attribute__((naked,noinline));
static void SCoopSwitch(void *newSP, void *oldSP)
{ asm volatile ("push r2 \n\t push r3 \n\t push r4 \n\t push r5 \n\t push r6 \n\t push r7 \n\t push r8 \n\t push r9 \n\t push r10 \n\t"
"push r11 \n\t push r12 \n\t push r13 \n\t push r14 \n\t push r15 \n\t push r16 \n\t push r17 \n\t push r28 \n\t push r29");
asm volatile ("movw r28, %[oldsp]" : : [oldsp] "r" (oldSP));
asm volatile ("in r2, 0x3d"); // SPL
asm volatile ("in r3, 0x3e"); // SPH
asm volatile ("std Y+0, r2"); // store the current SP into the pointer oldSP
asm volatile ("std Y+1, r3");
asm volatile ("movw r28, %[newsp]" : : [newsp] "r" (newSP));
asm volatile ("ldd r2, Y+0"); // restore the SP from the pointer newSP
asm volatile ("ldd r3, Y+1");
asm volatile ("in r4, 0x3f"); // save SREG
asm volatile ("cli "); // just to be safe on playing with stack ptr :) (useless with xmega)
asm volatile ("out 0x3e, r3"); // SPH
asm volatile ("out 0x3d, r2"); // SPL
asm volatile ("out 0x3f, r4"); // restore SREG asap (same approach as in setjmp.S credit to Marek Michalkiewicz)
asm volatile ("pop r29 \n\t pop r28 \n\t pop r17 \n\t pop r16 \n\t pop r15 \n\t pop r14 \n\t pop r13 \n\t pop r12 \n\t pop r11 \n\t"
"pop r10 \n\t pop r9 \n\t pop r8 \n\t pop r7 \n\t pop r6 \n\t pop r5 \n\t pop r4 \n\t pop r3 \n\t pop r2");
asm volatile ("ret"); };
#define SCoopGetSP() (uint16_t)SP // direct read access to SP register is possible
#define AVR_ATOMIC for ( uint8_t sreg_save __attribute__((__cleanup__(__iRestore))) = SREG, __ToDo = __iCliRetVal() ; __ToDo ; __ToDo = 0 )
static inline void __iRestore(const uint8_t *__s) { SREG = *__s; asm volatile ("" ::: "memory"); }
static inline uint8_t __iCliRetVal(void) { noInterrupts(); return 1; }
#define ARM_ATOMIC
/******** NEW MICROS METHOD BASED ON CORE_TEENSY / LIMITED TO 16 BITS **********/
/* Copyright (c) 2008-2010 PJRC.COM, LLC
* for the Teensy and Teensy++
* http://www.pjrc.com/teensy/
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#if F_CPU == 16000000L
#define TIMER0_MICROS_INC 4
#elif F_CPU == 8000000L
#define TIMER0_MICROS_INC 8
#elif F_CPU == 4000000L
#define TIMER0_MICROS_INC 16
#elif F_CPU == 2000000L
#define TIMER0_MICROS_INC 32
#elif F_CPU == 1000000L
#define TIMER0_MICROS_INC 64
#else
#define SCoopMicros() ((micros_t)micros()) // using the standard micros()
#warning "CPU Frequence not supported by the new micros() function"
#endif
#if defined(CORE_TEENSY)
extern volatile unsigned long timer0_micros_count; // this variable is incremented by timer 0 overflow
static inline micros_t SCoopMicros16(void) __attribute__((always_inline));
static inline micros_t SCoopMicros16(void) // same as standrad PJRC micros, but in 16 bits and with inlining
{ register micros_t out;
asm volatile(
"in __tmp_reg__, __SREG__" "\n\t"
"cli" "\n\t"
"in %A0, %2" "\n\t"
"in __zero_reg__, %3" "\n\t"
"lds %B0, timer0_micros_count" "\n\t"
"out __SREG__, __tmp_reg__" "\n\t"
"sbrs __zero_reg__, %4" "\n\t"
"rjmp L_%=_skip" "\n\t"
"cpi %A0, 255" "\n\t"
"breq L_%=_skip" "\n\t"
"subi %B0, 256 - %1" "\n\t"
"L_%=_skip:" "\n\t"
"clr __zero_reg__" "\n\t"
"clr __tmp_reg__" "\n\t"
#if F_CPU == 16000000L || F_CPU == 8000000L || F_CPU == 4000000L
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
#if F_CPU == 8000000L || F_CPU == 4000000L
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
#endif
#if F_CPU == 4000000L
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
#endif
"or %B0, __tmp_reg__" "\n\t"
#endif
#if F_CPU == 1000000L || F_CPU == 2000000L
"lsr %A0" "\n\t"
"ror __tmp_reg__" "\n\t"
"lsr %A0" "\n\t"
"ror __tmp_reg__" "\n\t"
#if F_CPU == 2000000L
"lsr %A0" "\n\t"
"ror __tmp_reg__" "\n\t"
#endif
"or %B0, %A0" "\n\t"
"mov %A0, __tmp_reg__" "\n\t"
#endif
: "=r" (out)
: "M" (TIMER0_MICROS_INC),
"I" (_SFR_IO_ADDR(TCNT0)),
"I" (_SFR_IO_ADDR(TIFR0)),
"I" (TOV0) : "r0" ); return out; }
#define SCoopMicros() (SCoopMicros16()) // overloading the standard micros()
#else // end of CORE_TEENSY. Now same job for the Arduino wiring.c library
extern volatile unsigned long timer0_overflow_count; // use this variable which is incremented at each overflow
static inline micros_t SCoopMicros16(void) __attribute__((always_inline));
static inline micros_t SCoopMicros16(void) // same as standrad PJRC micros, but in 16 bits and with inlining
{ register micros_t out ;
asm volatile(
"in __tmp_reg__, __SREG__" "\n\t"
"cli" "\n\t"
"in %A0, %2" "\n\t"
"in __zero_reg__, %3" "\n\t"
"lds %B0, timer0_overflow_count" "\n\t"
"out __SREG__, __tmp_reg__" "\n\t"
"sbrs __zero_reg__, %4" "\n\t"
"rjmp L_%=_skip" "\n\t"
"cpi %A0, 255" "\n\t"
"breq L_%=_skip" "\n\t"
#if F_CPU == 16000000L
"subi %B0, 1" "\n\t"
#elif F_CPU == 8000000L
"subi %B0, 2" "\n\t"
#endif
"L_%=_skip:" "\n\t"
"clr __zero_reg__" "\n\t"
"clr __tmp_reg__" "\n\t"
#if F_CPU == 16000000L || F_CPU == 8000000L
"lsl %B0" "\n\t"
"lsl %B0" "\n\t"
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
#if F_CPU == 8000000L
"lsl %B0" "\n\t"
"lsl %A0" "\n\t"
"rol __tmp_reg__" "\n\t"
#endif
"or %B0, __tmp_reg__" "\n\t"
#endif
: "=r" (out)
: "M" (TIMER0_MICROS_INC),
"I" (_SFR_IO_ADDR(TCNT0)),
"I" (_SFR_IO_ADDR(TIFR0)),
"I" (TOV0)
: "r0" ); return out; }
#define SCoopMicros() (SCoopMicros16()) // overloading the standard micros()
#endif // core_teensy
#endif
/********* SCOOPEVENT METHODS *******/
SCoopEvent::SCoopEvent()
{ init(NULL); // initialize specific object variable
registerThis(SCoopEventType); } // add to list and set state to Constructed
void SCoopEvent::registerThis(uint8_t type)
{ pNext = SCoopFirstItem; // memorize the latest item registered
SCoopFirstItem = this; // point the latest item to this one
itemType = type; // just to memorize the object type, as we use polymorphism
state = SCoopCONSTRUCTED; } // we are in the list and ready for a formal "init", either in the skecth or as a constructor extension
SCoopEvent::SCoopEvent(SCoopFunc_t func)
{ init(func);
registerThis(SCoopEventType); }
SCoopEvent::~SCoopEvent() // destructor : remove item from the list
{ unregisterThis();
if (SCoopFirstTaskItem == this) SCoopFirstTaskItem = pNext; // we do not need to change this if this is not the first task
// below section should be in Task Destructor, but didnt work there, probleme with chaining... so I put it here...
if ((itemType == SCoopDynamicTask) || (itemType == SCoopTaskType)) {
SCINM.targetCycleMicros -= reinterpret_cast<SCoopTask*>(this)->quantumMicros; // reduce target cycle time
SCoopNumberTask--;
#if SCoopYIELDCYCLE == 0
if (SCoopNumberTask>0) { SCINM.quantumMicrosReal = quantumMicros / SCoopNumberTask; }
#endif
#if SCoopANDROIDMODE >=2
if (itemType == SCoopDynamicTask) {
free(reinterpret_cast<SCoopTask*>(this)->pStackAddr); }
#endif
}
} // remove from list
void SCoopEvent::unregisterThis() // remove item from SCoop list (needed for local objects)
{SCoopEvent * ptr = SCoopFirstItem; // lets try first one
if (ptr == this) SCoopFirstItem = ptr->pNext;// if this item is the last one registered
else
do { if (ptr->pNext==this) { // if the next is the one to remove
ptr->pNext = ptr->pNext->pNext; // skip it
break; } } // we are done
while ((ptr=ptr->pNext)); // try next item until we find the end of the list (NULL)
state = SCoopTERMINATED;
};
void SCoopEvent::init(SCoopFunc_t func) // called by constructor, after registration
{ userFunc = func; // hook call for the "run", if not overriden by a virtual void in child object
if (func != NULL) state = SCoopNEW; // this object is ready to get started or even launched (as launch() also call start())
};
void SCoopEvent::start() { // launched by scheduler when calling SCINM.start()
ifSCoopTRACE(2,"Event::start");
if (state >= SCoopNEW) {
setup(); // call the setup function, and do something only if a derived object has been created with this method.
state = SCoopRUNNABLE; };
}
bool SCoopEvent::launch() { // launch or switch into this item or derived
//ifSCoopTRACE(2,"Event::launch"); // removed. too much printing !
if (state & SCoopPAUSED) return false; // check if item is suspended or not
if (!(state & SCoopTRIGGER)) return false;
SCoopATOMIC {
state = SCoopRUNNING; // this also clear the trigger flag at the same time :)
run();
state = SCoopRUNNABLE; } // an event shouldnt pause itself so lets go with RUNNABLE
return true; // has been launched
};
#if SCoopTRACE > 0
void SCoopEvent::traceThis() { // declare the trace functions for debuging or printing some info by user
SCp("this=");SCphex((ptrInt)this & 0xFFFF);
int x = (ptrInt) SCoopGetSP(); // only place where we use SP register, just to see its value
SCp(" SP=");SCphex( x & 0xFFFF); }
void SCoopEvent::trace(char * xx) {
traceThis();SCp(" ");SCpln(xx); }
#endif
void SCoopEvent::pause() // pausing an event just set the state to PAUSED
{ if (state >= SCoopRUNNABLE) { state |= SCoopPAUSED; } };
void SCoopEvent::resume() // resuming an event just clear the flag PAUSED ... might be not enough for user code
{ if (state & SCoopPAUSED) state &= ~SCoopPAUSED; };
bool SCoopEvent::paused() // just return the pause flag status
{ if (state & SCoopPAUSED) return true; else return false; }
/********* SCoopDelay CLASS *******/ // a basic virtual timer implementation. sort of "timerdown"
// very small size code in each method. compiler will probably inline and clone everything
SCoopDelay::SCoopDelay()
{ reset(); }
SCoopDelay::SCoopDelay(SCDelay_t reload)
{ set(setReload(reload)); }
SCDelay_t SCoopDelay::setReload(SCDelay_t reload)
{ return (reloadValue = reload); }
SCDelay_t SCoopDelay::getReload()
{ return reloadValue; }
void SCoopDelay::initReload()
{ set(reloadValue); }
void SCoopDelay::reload()
{ timeValue += reloadValue; }
bool SCoopDelay::reloaded()
{ if (elapsed()) {
reload();
return true; }
return false; }
void SCoopDelay::reset()
{ set(0); }
SCDelay_t SCoopDelay::set(SCDelay_t time)
{ return (timeValue = time + SCoopDelayMillis()); };
SCDelay_t SCoopDelay::get()
{ register SCDelay_t temp =(timeValue - SCoopDelayMillis());
if (temp <0) return 0; else return temp; }
SCDelay_t SCoopDelay::add(SCDelay_t time)
{ timeValue += time; return time; }
SCDelay_t SCoopDelay::sub(SCDelay_t time)
{ timeValue -= time; return time; }
bool SCoopDelay::elapsed()
{ return (get() == 0); }
/********* SCoopDelayUS CLASS *******/ // a basic virtual timer implementation. sort of "timerdown"
// very small size code in each method. compiler will probably inline and clone everything
SCoopDelayus::SCoopDelayus()
{ reset(); }
SCoopDelayus::SCoopDelayus(micros_t reload)
{ set(setReload(reload)); }
micros_t SCoopDelayus::setReload(micros_t reload)
{ return (reloadValue = reload); }
micros_t SCoopDelayus::getReload()
{ return reloadValue; }
void SCoopDelayus::initReload()
{ set(reloadValue); }
void SCoopDelayus::reload()
{ timeValue += reloadValue; }
bool SCoopDelayus::reloaded()
{ if (elapsed()) {
reload();
return true; }
return false; }
void SCoopDelayus::reset()
{ set(0); }
micros_t SCoopDelayus::set(micros_t time)
{ return (timeValue = time + SCoopMicros()); };
micros_t SCoopDelayus::get()
{ register micros_t temp =(timeValue - SCoopMicros());
if (temp <0) return 0; else return temp; }
micros_t SCoopDelayus::add(micros_t time)
{ timeValue += time; return time; }
micros_t SCoopDelayus::sub(micros_t time)
{ timeValue -= time; return time; }
bool SCoopDelayus::elapsed()
{ return (get() == 0); }
/********* SCoopTimer METHODS *******/
SCoopTimer::SCoopTimer() : SCoopEvent()
{initBasic(); init(0,NULL); };
SCoopTimer::SCoopTimer(SCDelay_t period) : SCoopEvent()
{initBasic(); init(period, NULL); };
SCoopTimer::SCoopTimer(SCDelay_t period, SCoopFunc_t func) : SCoopEvent()
{initBasic(); init( period, func); }
void SCoopTimer::initBasic() {
counter = -1;
userFunc = NULL;
itemType = SCoopTimerType; };
void SCoopTimer::init(SCDelay_t period, SCoopFunc_t func) {
timer.setReload(period); timer.reset();
userFunc = func;
if (func != NULL)
state = SCoopNEW; } // we can use this NEW state as the user function is now defined
void SCoopTimer::start() {
ifSCoopTRACE(3,"Timer::start");
SCoopEvent::start();
timer.initReload(); // make sure the timer is starting with the reload period value
}
bool SCoopTimer::launch()
{ if ((counter == 0) || (timer.getReload() == 0)) return false;
if (timer.reloaded()) {
//ifSCoopTRACE(3,"Timer::launch/run"); // removed too much printing
state |= SCoopTRIGGER;
register bool launched = SCoopEvent::launch();
if ((launched ) && (counter > 0)) counter--;
return launched; } // rearm next run time so timers are NOT desynchronized by pause(). (my default choice)
return false; };
SCDelay_t SCoopTimer::getTimeToRun()
{ if ((counter == 0) || (timer.getReload() == 0)) return -1;
return timer.get(); };
void SCoopTimer::setTimeToRun(SCDelay_t time)
{ timer.set(time); };
void SCoopTimer::schedule(SCDelay_t time, SCoopTimerCount_t count)
{ timer.set(timer.setReload(time)); counter = count; };
void SCoopTimer::schedule(SCDelay_t time)
{ schedule(time,-1); };
/********* SOME BASIC FUNCTIONS *******/
void SCoopMemFill(uint8_t *startp, uint8_t *endp, uint8_t v)
{ if (startp) while (startp < endp) *startp++ = v; };
ptrInt SCoopMemSearch(uint8_t *startp, uint8_t *endp, uint8_t v)
{ uint8_t *ptr = startp;
while (ptr < endp) if (*ptr++ != v) break;
return ((ptrInt)ptr-(ptrInt)startp-1);
};
/********* SCoopTASK METHODS *******/
// CONSTRUCTORS
SCoopTask::SCoopTask() : SCoopEvent()
{ initBasic(); }
SCoopTask::SCoopTask(SCoopStack_t* stack, ptrInt size) : SCoopEvent()
{ initBasic(); init(stack,size); }
SCoopTask::SCoopTask(SCoopStack_t* stack, ptrInt size, SCoopFunc_t func) : SCoopEvent()
{ initBasic(); init(stack,size,func); }
void SCoopTask::initBasic() {
SCoopNumberTask++;
pStackAddr = NULL;
pStack = NULL;
userFunc = NULL;
register SCoopEvent* ptr = pNext; // point on the previous item registered in the standard item list (if any)
pNext = SCoopFirstTaskItem; // register in the task list
SCoopFirstTaskItem = this;
if (ptr != pNext) { // if there was another (non task) item in the list before the previous task
SCoopFirstItem = ptr; // mark this item as now being the first
while (ptr->pNext != pNext) ptr = ptr->pNext; // search last event or item
ptr->pNext = this; } // now points to the new task
itemType = SCoopTaskType; }
void SCoopTask::init(SCoopStack_t* stack, ptrInt size)
{ pStackAddr = (uint8_t*)stack;
pStack = (uint8_t*)stack + ((size-sizeof(SCoopStack_t)) // prepare task stack to the top of the space provided
#if defined(SCoop_ARM) && (SCoop_ARM == 1)
& ~7
#endif
);
SCoopMemFill((uint8_t*)stack, pStack, 0x55); // fill with 0x55 patern in order to calculate StackLeft later
};
void SCoopTask::init(SCoopStack_t* stack, ptrInt size, SCoopFunc_t func) // only this one can be called by user
{ init(stack,size);
userFunc = func;
if (func != NULL)
state = SCoopNEW; } // we have a stack and a user function so we can "start" later.
SCoopTask::~SCoopTask(){ } // destructor to remove task from list .. doesnt really work with "delete"
/********* ONLY USED IF SCoopTRACE DEFINED *******/
#if SCoopTRACE > 0
void SCoopTask::trace(char * xx) {
SCoopEvent::traceThis();
SCp(" @Stack=");SCphex((ptrInt)pStackAddr & 0xFFFF);
SCp(" pStack=");SCphex((ptrInt)pStack & 0xFFFF);
SCp(" ");SCpln(xx); }
#endif
/******** START and LAUNCH SECTION ****************/
void SCoopTask::start() {
ifSCoopTRACE(3,"Task::start");
if (pStack) { // sanity check if stack has been allocated by user or constructor ...
if ((state & SCoopNEW)) { // if the task context is not yet set
ASM_ATOMIC { // de activate interrupt so we can use the stack content for further copy/paste
SCoopSwitch(&SCINM.mainEnv,&SCINM.mainEnv); // simulate switching but with current context : back to same place !
if (state & SCoopRUNNABLE) { // this will be executed only when we comeback here with a backToTask the very first time
startFirstLoop(); // quite equivalent to a "setjmp" mechanism
}; // never come back here then.
{ register uint8_t* pEnd = SCINM.mainEnv; //
register uint8_t* pSource = (uint8_t*) SCoopGetSP(); // start from the stack
do { *pStack-- = *pSource--; } // we copy the stack context to the newly pStack space,
while (pSource != pEnd); } // this includes the previous return adress (@!@)
// so we ll endup just below the previous call to scoopswitch above (@\_/@)
}; // we can restore interrupts as we are finished with critical stack handling
}; // continue forward to launch setup
SCoopEvent::start(); // call the user setup function (if defined in derived object) and set object RUNNABLE
quantumMicros = SCINM.startQuantum; // initialize quantum time provided by start (xx) or by user or by default
SCINM.targetCycleMicros += quantumMicros; // cumulate time to calculate target cycle time
prevMicros = SCoopMicros(); // memorize time , to calculate time spent in the task and in the cycle
timer = 0; } // this will enable imediate user call to sleepSync to work properly
} // end start()
void SCoopTask::startFirstLoop() { // will execute this function the first call to backToTask() made by yield()
#if SCoopTIMEREPORT > 0
yieldMicros = 0; maxYieldMicros = 0;
#endif
state = SCoopRUNNING;
while (true) { // a SCoop task will never end ...
if (!(state & SCoopPAUSED)) {
loop(); // call user function (derived virtual loop or user adress)
yieldInline(quantumMicros); } // try to switch task if we reach the end of the user loop
else yield(0); // switch imediately to next task (or scheduler) if we are paused
}
}
bool SCoopTask::launch() {
// ifSCoopTRACE(3,"task::launch")
if (state & SCoopRUNNABLE) { // make sure the task context is setup first and start() has been called already
if (!(state & (SCoopPAUSED | SCoopKILLING)))
{ SCINM.Task = this; // we always can find a pointer to the current task in which we are running
SCoopSwitch(&pStack,&SCINM.mainEnv);
return true; } // return to scheduler / yield() or cycle()
else prevMicros = SCoopMicros(); // just to avoid jeopardizing the cycleMicros in fact
} else
if (state & SCoopNEW) start(); // initialize context if not done in the main arduino setup() section ...
return false; }
#if SCoopANDROIDMODE >= 2
void SCoopTask::kill()
{ if (itemType == SCoopDynamicTask)
state |= (SCoopKILLING );
if (mySCoop.Task == this) yieldSwitch(); // quick return to main scheduler for treating the situation
}
#endif
/******** YIELD SECTION ****************/
void SCoopTask::yield() // check if the quantum time alowed is elapsed, the switch to scheduler
{ yieldInline(quantumMicros); }
void SCoopTask::yield(micros_t quantum)
{ yieldInline(quantum); }
void SCoopTask::yieldInline(micros_t quantum)
{ if (quantum) {
register micros_t spent = SCoopMicros() - prevMicros;
if (spent >= quantum) yieldSpent(spent); } // switch makes sense
else if (!SCINM.Atomic) yieldSwitch();
};
void SCoopTask::yieldSpent(micros_t spent) // immediate jump back to scheduler
{ if (SCINM.Atomic) return; // do nothing if we are in a atomic section
#if SCoopTIMEREPORT > 0 // verifiy if we want to measure timing
if (spent > maxYieldMicros) maxYieldMicros = spent; // check max time to capture peak
yieldMicros += spent - (yieldMicros >> SCoopTIMEREPORT); // this cumulate the time spent in the task over the 2^x last cycles
#endif
yieldSwitch(); }
void SCoopTask::yieldSwitch() {
register SCoopEvent* temp;
if ((SCoopYIELDCYCLE == 1) && // optimize speed by directly switching next adjacent task
((temp=pNext) != NULL) && // only if possible, otherwise back to main loop
((temp->state & (SCoopRUNNABLE | SCoopPAUSED | SCoopKILLING)) == SCoopRUNNABLE)) {
SCINM.Current = temp;
SCINM.Task = (SCoopTask*)temp; // lets go next
SCoopSwitch(&(((SCoopTask*)temp)->pStack),&pStack); } // save our context and use next one
else { // systematically return to main loop or scheduler if using cycle()
SCINM.Task = NULL;
SCoopSwitch(&SCINM.mainEnv,&pStack); } // save context and return to main scheduler
// will return here by launch() from scheduler yield() or cycle()
prevMicros = SCoopMicros();
}; // come back into the task HERE / NOW
/******** SLEEP SECTION ****************/
void SCoopTask::sleep(SCDelay_t ms) // will replace your usual arduino "delay" function
{ sleepMs(ms,false); };
void SCoopTask::sleepSync(SCDelay_t ms) // same as Sleep but delays are not absolute but relative to previous call to SleepSync
{ sleepMs(ms, true); };
void SCoopTask::sleepMs(SCDelay_t ms, bool sync) {
ifSCoopTRACE(3,"Task::sleepms");
if (ms < 1) { timer.reset(); return; }
if (sync) timer.add(ms); else timer.set(ms);
state = SCoopWAITING;
while (timer) yield(0);
state = SCoopRUNNING; }
bool SCoopTask::sleepUntil(vbool& var, SCDelay_t timeOut) // just wait for an "external" variable to become true, with a timeout
{ register bool temp = false;
if (timeOut) {
timer.set(timeOut);
temp = true; }
return sleepUntilBool(var, temp); }
void SCoopTask::sleepUntil(vbool& var) // just wait for an "external" variable to become true
{ sleepUntilBool(var, false); }
bool SCoopTask::sleepUntilBool(vbool& var, bool checkTime) { // just wait for an "external" variable to become true
ifSCoopTRACE(3,"Task::sleepuntil");
state=SCoopWAITING;
while(!var) {
yield(0);
if (checkTime)
if (timer.elapsed()) { state = SCoopRUNNING; return false; }
}
state = SCoopRUNNING;
var=false; return true; }
ptrInt SCoopTask::stackLeft()
{ if (pStackAddr) { // sanity check if stack has been initialized
return SCoopMemSearch(pStackAddr, pStack, 0x55);}
else return 0;
};
/********* SCoop METHODS *******/
SCoop::SCoop() // constructor
{ startQuantum = SCoopDefaultQuantum; // every task will get the default value unless changed in their setup or with sart()
quantumMicros = SCoopDefaultQuantum; // the main loop also
#if SCoopYIELDCYCLE == 0
quantumMicrosReal = 0; // we do nt know yet the number of task registered
#endif
targetCycleMicros = 0; // we do nt know yet the total cycle time
#if SCoopTIMEREPORT > 0 // verifiy if we want to measure timing
cycleMicros = 0; maxCycleMicros = 0;
#endif
Current = NULL;
Task = NULL;
Atomic = 1; }; // ensure yield is not activated
void SCoop::start(micros_t cycleTime, micros_t mainLoop) // define the total length of the cycle and the main loop quantum
{ startQuantum = (cycleTime - mainLoop) / (SCoopNumberTask);
quantumMicros = mainLoop; // specific time for main loop
start(); }
void SCoop::start(micros_t cycleTime) // define the total length of the cycle for all tasks+1
{ startQuantum = cycleTime / (SCoopNumberTask+1); // consider the main loop as a task
quantumMicros = startQuantum; // time for the main loop will be the same then
start(); }
void SCoop::start() // start all objects in the list
{ targetCycleMicros = quantumMicros; // initialization
#if SCoopYIELDCYCLE == 0
quantumMicrosReal = quantumMicros / SCoopNumberTask; // divide time in slice, as we come back here at each task switch...
#endif
#if SCoopTRACE > 1
SCp("starting scheduler : ");SCp(SCoopNumberTask);SCp("+1 tasks, quantum = "); SCp(startQuantum);SCp(", main loop quantum = ");SCp(quantumMicros);
#endif
Current = SCoopFirstItem; // take the first
while (Current) {
Current->start(); // start this task (initialize environement and call setup())
Current = Current->pNext; } // take next ptr
#if SCoopTRACE > 1
SCp(", target cycle time = ");SCpln(targetCycleMicros); // this is calculated by the task::start()
#endif
SCINM.Atomic=0; // ready for switchiching task with "yield"
};
// this is the main code for the Scheduler, relying on yield() method as a state machine
void SCoop::yield0() // can be called from where ever in order to Force the switch to next task
{ if (Task) Task->yield(0); else SCoop::yield(); }
void SCoop::yield() // can be called from where ever in order to Force the switch to next task
{ if (Task) Task->yield(); // we ve been called from a task context lets yield from there
else {
if (Atomic) return; // self explaining
register SCoopEvent* temp = SCoopFirstItem;
while (temp != SCoopFirstTaskItem) { temp->launch(); temp = temp->pNext; } // launch all events
register micros_t time;
if (Current == NULL) { // a cycle is completed
temp = SCoopFirstTaskItem;
if (temp == NULL) return; // no tasks in the list !
// check overall target cycle time before launching first task
#if SCoopTIMEREPORT > 0 // verifiy if we want to measure timing , then calculate average cycle time
time = SCoopMicros() - reinterpret_cast<SCoopTask*>(temp)->prevMicros; // mesure whole cycle length based on first task information
if (quantumMicros) { // check if we are supposed to spend some time in the main loop or not
if (time < targetCycleMicros) return; } // back in main loop() until we reach the expected target cycle time
Current = temp; // we can launch this first task
if (time > maxCycleMicros) maxCycleMicros = time;
cycleMicros += (time - (cycleMicros>> SCoopTIMEREPORT));
#else
if (quantumMicros) { // check if we are supposed to spend some time in the main loop or not
time = SCoopMicros() - reinterpret_cast<SCoopTask*>(temp)->prevMicros; // mesure whole cycle length based on first task information
if (time < targetCycleMicros) return; } // back in main loop() until we reach the expected target cycle time
Current = temp; // we can launch this first task
#endif
}
else { // lets check intertask timing before launching the next
#if SCoopYIELDCYCLE == 0
if (quantumMicrosReal) { // check if we should spend quite some time in the main loop between 2 tasks
time = SCoopMicros()
- reinterpret_cast<SCoopTask*>(Current)->prevMicros // give the time since last task executed
- reinterpret_cast<SCoopTask*>(Current)->quantumMicros; // mesure whole cycle length based on first task information
if (time < quantumMicrosReal) return; // back in main loop() until we reach the expected target cycle time
}
#endif
};
do { temp = Current;
temp->launch(); // now launch tasks from the list, and may be all in a single launch()
Current = temp->pNext;
#if SCoopANDROIDMODE >= 2 // check if we autorize the killme
if ((temp->state & SCoopKILLING) &&
(temp->itemType == SCoopDynamicTask)) {
delete temp;
} // killing done
#endif
#if SCoopYIELDCYCLE == 0 // back to main task if we are not in yield cycle mode
return;
#endif // otherwise we just go back into the main loop
} while (Current);
}
}
void SCoop::cycle() { // execute a complete cycle across all tasks & events
#if SCoopTRACE > 1
SCpln("start scheduler cycle()");
#endif
do { yield(); } while (Current); };
void SCoop::sleep(SCDelay_t time)
{ SCoopDelay SCoopSleepTimer;
SCoopSleepTimer = time; while (SCoopSleepTimer) SCINM.yield(); }
void SCoop::delay(uint32_t ms) {
uint32_t end = millis() + ms;
while (millis() < end) yield();
}
#if SCoopANDROIDMODE >= 1
SCoopTask* SCoop::startLoop(SCoopFunc_t func, uint32_t stackSize) {
uint8_t *stack = (uint8_t*)malloc(stackSize);
if (!stack) return NULL;
SCoopTask *task = new SCoopTask((SCoopStack_t*)stack,stackSize,func);
if (!task) {
free(stack);
return NULL; }
// object now exist and is registered in the list!
task->itemType = SCoopDynamicTask;
return task;
};
#endif
/*************** OVERLOAD STANDARD YIELD *****************/
#if SCoopOVERLOADYIELD == 1
void yield(void) { SCINM.yield(); }; // overload standard arduino yield
void yield0(void){ SCINM.yield0(); }; // overload standard arduino yield
#endif
void __attribute__((weak)) sleep (SCDelay_t time)
{ SCINM.sleep(time); }
/*************** FIFO *****************/
SCoopFifo::SCoopFifo(void * fifo, const uint8_t itemSize, const uint16_t itemNumber)
{ this->itemSize = itemSize;
ptrMin = (uint8_t*)fifo;
ptrIn = (uint8_t*)fifo;
ptrOut = (uint8_t*)fifo;
ptrMax = (uint8_t*)fifo + (itemNumber * itemSize); }
uint16_t SCoopFifo::count() { // return the number of item currently in the fifo
register int16_t temp;
AVR_ATOMIC { temp = (ptrIn-ptrOut); }
return (temp<0 ? (temp + ptrMax-ptrMin) : temp); }
bool SCoopFifo::put(void* var) // put a record in the pifo and return true if ok or false if fifo is full
{ register uint8_t N = itemSize;
register uint8_t* dest;
register uint8_t* source;
AVR_ATOMIC { dest = ptrIn; }
register uint8_t* post = dest + N;
if (post >= ptrMax) { post = ptrMin; }
AVR_ATOMIC { source = ptrOut; }
if (post != source) { // no overload
source = (uint8_t*)var;
do { *dest++ = *source++; } while (--N);
AVR_ATOMIC { ptrIn = post; }
return true; // ok
} else return false; } // fifo was full
bool SCoopFifo::putChar(const uint8_t value) {
uint8_t X=value; return put(&X); }
bool SCoopFifo::putInt(const uint16_t value) {
uint16_t X=value; return put(&X); }
bool SCoopFifo::putLong(const uint32_t value) {
uint32_t X=value; return put(&X); }
bool SCoopFifo::get(void* var) // retreive one record from the fifo, if not empty otherwise return false
{ register uint8_t* In;
register uint8_t* source;
AVR_ATOMIC { In=ptrIn; source=ptrOut; }
if (In != source) {
register uint8_t N = itemSize;
register uint8_t* dest = (uint8_t*)var;
do { *dest++ = *source++; } while (--N) ;
if (source >= ptrMax) { source = ptrMin; }
AVR_ATOMIC { ptrOut = source; }
return true; // ok
} else return false; // fifo was empty
}
void SCoopFifo::getYield(void* var) // same as get(var) but wait until fifo is not empty, and calls yield()
{ register uint8_t* In;
register uint8_t* Out;
while (true) {
AVR_ATOMIC { In=ptrIn; Out=ptrOut; }
if (In == Out) yield(); else break; } ;
get(var); }
uint8_t SCoopFifo::getChar()
{ uint8_t result8;
getYield(&result8); return result8; }
uint16_t SCoopFifo::getInt()
{ uint16_t result16;
getYield(&result16); return result16; }
uint32_t SCoopFifo::getLong()
{ uint32_t result32;
getYield(&result32); return result32; }
uint16_t SCoopFifo::flush() { // empty the fifo
ASM_ATOMIC { // this will de activate interrupts
ptrIn = ptrMin;
ptrOut = ptrMin; } // this will ACTIVATE interrupts
return (ptrMax-ptrMin); }
uint16_t SCoopFifo::flushNonAtomic() { // empty the fifo
ptrIn = ptrMin;
ptrOut = ptrMin;
return (ptrMax-ptrMin); }

View File

@@ -0,0 +1,645 @@
#ifndef SCOOP_H
#define SCOOP_H
/*****************************************************************************/
/* SCOOP LIBRARY / AUTHOR FABRICE OUDERT / GNU GPL V3 */
/* https://code.google.com/p/arduino-scoop-cooperative-scheduler-arm-avr/ */
/* VERSION 1.2 NEW YEAR PACK 10/01/2013 */
/* ENJOY AND USE AT YOUR OWN RISK :) */
/* SHOULD READ USER GUIDE FIRST (@!@) */
/*****************************************************************************/
/******** PREPROCESSING CONDITIONS ********/
// SCoopTRACE enables using trace("x") function in the user program, or even tracing the scheduler behavior, with following values:
// 0=disable source code for trace function, disable "scoopdebug"
// 1=enable trace("x") functions in user sketch only.
// 2=enable the library to print traces when running mySCoop.start()
// 3=enable the library to print traces when starting SCoopEvent or derived
// 4=enable the library to print traces when starting tasks or timers
#define SCoopTRACE 1
// SCOOPTIMEREPORT enable time control variables in SCoopTask and enables cycletime average calculation. accept following values:
// 4 -> 16 cycle average, 3->8 average cycles, 2 ->4 cycle average , 1 -> 2 cycles average,
// 0 : NO TIME MEASUREMENT , NO VARIABLES yieldMicros,cycleMicros,maxCycleMicros,maxYieldMicros...
#define SCoopTIMEREPORT 1 // default value =1 in order to prioritize performance for the user program.
// overload to 4 in ARM section, if this definition was not 0, as we have more power in ARM
#define SCoopYIELDCYCLE 1 // if set to 1, yield will automatically launch all tasks in the list
// without coming back to main loop (like mySCoop.cycle() (faster when more than 1 task)
#define SCoopInstanceNickName mySCoop // could be changed for "Sch" or "SC" or whatever you prefer
#define ArduinoSchedulerNickName Scheduler // for compatibility with Arduino DUE library
#define SCoopANDROIDMODE 1 // set to 1 if we want to have the possibility to use startLoop()
// set to 2 if we also want possibility to kill the task
#define SCoopOVERLOADYIELD 1 // set to 1 to provides a yield() global function which will overload standard arduino yield()
#if (ARDUINO < 103)
#warning "V1.2 TESTED ONLY ON 1.0.3 with PanSTamp, Arduino UNO, Teensy++2.0, Teensy2.0 and Teensy3.0"
#endif
#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h> // not a valid approach for ARM
#endif
#if defined (__AVR__)
#define SCoop_AVR 1 // inform the library that the code is made for AVR
#define SCDelay_t int32_t // type for all the virtual timer used in scoop library (period of timer, sleep function..)
#define SCoopTimerCount_t int32_t // define the type of the counter used in SCoopTimer. can be changed to int32_t instead
// these 2 variables could changed to int16_t without any issue !
#define SCoopDefaultQuantum 400 // recomended before switching to next task. this provide a 5% overhead time used by scheduler, for 3 tasks+loop
#define SCoopDefaultStackSize 150 // to be experimented by user. seems enough for a task with couple of variable and a call to serial.print
#define AndroidSchedulerDefaultStack SCoopDefaultStackSize
#define micros_t int16_t // used for low level time handling. MUST not be changed to int32
#define ptrInt uint16_t // used to typecast pointers to integer
typedef uint8_t SCoopStack_t; // type definition for stack array of bytes
#elif defined(__MK20DX128__) || defined (__SAM3X8E__) // below code enables compiling on ARM / could be replace by #elif defined(__arm__)
#define SCoop_ARM 1 // inform the lbrary that the code is made for ARM // not used yet
#define SCDelay_t int32_t // type for all the virtual timer used in scoop library (period of timer, sleep function..)
#define SCoopTimerCount_t int32_t // define the type of the counter used in SCoopTimer. can be changed to int32_t instead
#define SCoopDefaultQuantum 200; // recomended before switching to next task. this provide a 1% overhead time used by scheduler, for 3 tasks+loop
#define SCoopDefaultStackSize 256 // must be a multiple of 8
#define AndroidSchedulerDefaultStack 1024 // a bit too much, just for backward compatibility reason
#define micros_t int32_t // all low level micros second computation will be done in 32 bit too. possibility to change to int16
#define ptrInt uint32_t // used to typecast pointers to integer
typedef uint64_t SCoopStack_t __attribute__ ((aligned (8)));
#else
#error "this library might not be compatible with this NON-AVR / ARM platform. Please experiment and report on Arduino.cc forum"
#endif
#define SCoopDelayMillis() (SCDelay_t)millis() // overloading and typecasting the standard millis()
// some macro for easy code writing, just to replace "Serial." ...
#define SCbegin(_X) { Serial.begin(_X);while(!Serial); }
#define SCp(_X) { Serial.print(_X); }
#define SCphex(_X) { Serial.print(_X,HEX); }
#define SCpln(_X) { Serial.println(_X); }
#define SCplnhex(_X) { Serial.println(_X,HEX); }
#define SCkey() { Serial.print(">?");while (!(Serial.available())) ; SCpln((uint8_t)Serial.read()); }
#define SCpkey1(_X) { Serial.print("<");Serial.print(_X);SCkey(); }
#define SCpkey2(_X,_Y) { Serial.print("<");Serial.print(_X);Serial.print(":");Serial.print(_Y,HEX);SCkey(); }
#define ifSCoopTRACE(_X,_Y) if (SCoopTRACE > (_X)) { trace(_Y); } // to make code more readable
/********* type defs *******/
typedef void (*SCoopFunc_t)(void); // type definition for a pointer to a function
typedef volatile int8_t vi8; // hope everyone like it
typedef volatile int16_t vi16;
typedef volatile int32_t vi32;
typedef volatile uint8_t vui8;
typedef volatile uint16_t vui16;
typedef volatile uint32_t vui32;
typedef volatile uint64_t vui64; // yep you can also play with 64 bits variable on ARM platform without pain
typedef volatile int64_t vi64;
typedef volatile boolean vbool;
// definition of the various state of an object or task. this was prefered to "enum" for using 8 bits instead of 16bits on AVR ...
#define SCoopTERMINATED 0
#define SCoopCONSTRUCTED B00001 // object state, compatible with Java library
#define SCoopNEW B00010 // context ready
#define SCoopRUNNABLE B00100 // bit 2 means the task is runnable or running : setup() has been launched and context ready
#define SCoopRUNNING B00101 // inside run() or loop()
#define SCoopWAITING B00110 // inside a sleep method
#define SCoopPAUSED B01000 // bit 3 means the task is paused
#define SCoopTRIGGER B10000 // force object to be launched when calling launch()
#define SCoopKILLING B100000 // force object to be killed by Scheduler (or paused if static)
#define SCoopEventType 1 // used to provide a statical type information to the object in the list (polymorph)
#define SCoopTaskType 2 // only used by mySCoop.start() in the library code , as virtual call were prefered elsewhere
#define SCoopTimerType 3 // not used so far
#define SCoopDynamicTask 4 //
/********* Objects Prototypes *******/
class SCoopDelay;
class SCoopDelayus;
class SCoopEvent;
class SCoopTimer;
class SCoopTask;
class SCoop;
/********* GLOBAL VARIABLE *******/
extern SCoopEvent * SCoopFirstItem; // point on the latest registered item in the scheduler list
extern SCoopTask* SCoopFirstTask; // point on the latest registered task
extern uint8_t SCoopNumberTask; // the number of tasks registered (main loop() not counted)
extern void sleep(SCDelay_t time); // (weak) in order to replace standard delay() for Arduino <150 not containing yield
extern SCoop SCoopInstanceNickName; // one forced instance of the SCoop Scheduler
#if SCoopANDROIDMODE >= 1
extern SCoop& ArduinoSchedulerNickName; // redundant declaration for compatibilit with the name of the Android/DUE "Scheduler"
#endif
#if SCoopOVERLOADYIELD == 1
extern void yield(void); // used to overload the Arduino yield "weak"
extern void yield0(void); // used to define our global yield(0)
#endif
#define SCoopClassOperatorEqual(name,type) name & operator=(const type rhs) { set(rhs); return *this; }; // magic statement tadah
/********* SCoopEVENT CLASS *******/
class SCoopEvent // represent an object in the SCoop list (task, event, msg...)
{ public:
SCoopEvent(); // basic constructor to register the object in the list
SCoopEvent(SCoopFunc_t func); // possibility to pass the user function (instead of overloading run() )
~SCoopEvent(); // destructor to remove item from the list
void registerThis(uint8_t type) // add this item to the list (top/first)
__attribute__((noinline)); // well, too much code generated. better to call it
void unregisterThis() // remove the item from the list
__attribute__((noinline)); // well, too much code generated. better to call it
void init(SCoopFunc_t func); // init the object (an extension of constructor actions).
// Set state to NEW if parameter not NULL
#if SCoopTRACE > 0 // if we want to trace whats hapen during start&launch
void traceThis(); // specifically display the "this" pointer value, and the SP stack
void trace(char * xx); // display "this , SP" and the xx string
#else
#define traceThis() ; // no code generated then
#define trace(x) ;
#endif
virtual void setup() { }; // can be overloaded by derived object. called by start()
virtual void run() // should be overloaded if used in a derived object. other wise call the user function if defined.
{ if (userFunc) { userFunc(); } }; // called by launch().
virtual void start(); // used to init the user object by launching its setup(). called by mySCoop.start() only, if object in state NEW
virtual bool launch() ; // launch or switch into this item or its derived if not paused. called by mySCoop.yield() only
virtual void pause(); // put the object in a state where it will not be launched again until resumed
virtual bool paused(); // return the paused status as a boolean
virtual void resume(); // clear the flag and enable the task to run again
void set() { set(true); } // force event to be launched by futur yield()
bool set(bool val) // same but possibility to pass an expression
{ if (val) { state |= SCoopTRIGGER; }; return val; }
SCoopClassOperatorEqual(SCoopEvent,bool) // overload operator assignement to make things event simpler
uint8_t getState() // for compatibility with Java Thread library ...
{ return state; }; // basically return the object state. see definition section for potential values
bool isAlive() // means object is in the list and has been init() successfully
{ return ((state >= SCoopNEW)); } // may be the object is not started yet. for compatibility with Java Thread library ...
SCoopEvent * pNext; // point to the next object registered in the list
uint8_t itemType; // place holder for recognizing item type, as we use polymorphism...
vui8 state; // status of the object. see definition section fro potential values.
protected:
SCoopFunc_t userFunc; // pointer to the user function to call
private: // nothing private
// Total object variables = 6 bytes on AVR or 10 on ARM, per object instance
}; // end of class SCoopEvent.
/********* FACILITATE EVENT DEFINITION *******/
// this creates a derived object inheriting from SCoopEvent,
#define defineEventBegin(myevent) \
class myevent : public SCoopEvent \
{public: myevent () : SCoopEvent() { state = SCoopNEW; }; \
SCoopClassOperatorEqual(myevent,bool)
#define defineEventEnd(myevent) }; myevent myevent ;
#define defineEvent(myevent) defineEventBegin(myevent) void setup();void run(); defineEventEnd(myevent)
// user must define the run and the setup method in the myevent scope with:
// void myevent :: setup() { ... }
// void myevent :: run() { ... }
// Same but the user just has to put the bloc code { } for a single run method
#define defineEventRun(myevent) defineEvent(myevent) void myevent :: setup() { }; void myevent :: run()
// user must write the bloc code for run directly after this macro :
// defineEventRun(myEvent1) { ... }
/********* SCOOPDELAY CLASS *******/ // a basic virtual timer solution
class SCoopDelay // sort of timerDown... used in SCoopTimer and SCoopTask and sleep
{ public:
SCoopDelay(); // basic constructor. set time to 0 . doesnt touch reload variable;
SCoopDelay(SCDelay_t reload); // possibility to define reload value, otherwse linker should remove the corresponding code avd variable
SCDelay_t setReload(SCDelay_t reload); // define the reload period for this object
SCDelay_t getReload(); // return the period variable
void initReload(); // load the timer with its reload value
void reload(); // add the reload time to the timer
bool reloaded(); // return true (only once) each time when "reload" is spent;
void reset(); // reset timer
SCDelay_t set(SCDelay_t time) // set the time value . return time value . timer will start counting down
__attribute__((noinline)); // we prefer a call to this method as it will take time anyway
SCDelay_t get() // return the value corresponding to the remaining time. return 0 if negative
__attribute__((noinline));
SCDelay_t add(SCDelay_t time); // add amount of time to timer, keep timer synchronized with millis.
SCDelay_t sub(SCDelay_t time);
bool elapsed(); // return true if timer has reached 0. doesnt reload -> use reloaded instead.
operator SCDelay_t() { return get(); } // SCoopDelay can be used in an interger expression
SCoopClassOperatorEqual(SCoopDelay,SCDelay_t) // another magic statement
SCoopDelay & operator=(const SCoopDelay & rhs) // overload operator assignement
{ timeValue=rhs.timeValue; return *this; }
SCoopDelay & operator+=(const SCDelay_t rhs) // overload operator += to make things event simpler
{ add(rhs); return *this;}
SCoopDelay & operator-=(const SCDelay_t rhs) // overload operator -= to make things event simpler
{ sub(rhs); return *this;}
SCDelay_t timeValue; // the realtime value of the timer
private:
SCDelay_t reloadValue; // store the period for further reload.
// might be removed by linker, if object instance doesnt use reload function or constructor
};
/********* SCOOPDELAYUS CLASS *******/ // a basic virtual timer solution
class SCoopDelayus // sort of timerDown... used in SCoopTimer and SCoopTask and sleep
{ public:
SCoopDelayus(); // basic constructor. set time to 0 . doesnt touch reload variable;
SCoopDelayus(micros_t reload); // possibility to define reload value, otherwse linker should remove the corresponding code avd variable
micros_t setReload(micros_t reload); // define the reload period for this object
micros_t getReload(); // return the period variable
void initReload(); // load the timer with its reload value
void reload(); // add the reload time to the timer
bool reloaded(); // return true (only once) each time when "reload" is spent;
void reset(); // reset timer
micros_t set(micros_t time) // set the time value . return time value . timer will start counting down
__attribute__((noinline)); // we prefer a call to this method as it will take time anyway
micros_t get() // return the value corresponding to the remaining time. return 0 if negative
__attribute__((noinline));
micros_t add(micros_t time); // add amount of time to timer, keep timer synchronized with millis.
micros_t sub(micros_t time);
bool elapsed(); // return true if timer has reached 0. doesnt reload -> use reloaded instead.
operator micros_t() { return get(); } // SCoopDelay can be used in an interger expression
SCoopClassOperatorEqual(SCoopDelayus,micros_t) // another magic statement
SCoopDelayus & operator=(const SCoopDelay & rhs) // overload operator assignement
{ timeValue=rhs.timeValue; return *this; }
SCoopDelayus & operator+=(const micros_t rhs) // overload operator += to make things event simpler
{ add(rhs); return *this;}
SCoopDelayus & operator-=(const micros_t rhs) // overload operator -= to make things event simpler
{ sub(rhs); return *this;}
private:
micros_t timeValue; // the realtime value of the timer
micros_t reloadValue; // store the period for further reload.
// might be removed by linker, if object instance doesnt use reload function or constructor
};
/********* SCoopTIMER CLASS *******/
class SCoopTimer : public SCoopEvent
{ public:
SCoopTimer(); // constructor
SCoopTimer(SCDelay_t period);
SCoopTimer(SCDelay_t period, SCoopFunc_t func);
void init(SCDelay_t period, SCoopFunc_t func); // user function only
void setTimeToRun(SCDelay_t time); // set the next launch time to happen in "time" ms
SCDelay_t getTimeToRun(); // return the value corresponding to the time when the timer will be launched
void schedule(SCDelay_t time); // plan the next launch (same as SetTimeToRun in fact, but force counter to -1
void schedule(SCDelay_t time, SCoopTimerCount_t count); // same but with a limited number of occurences (count)
virtual void start(); // initialize timer and make it ready for launch
virtual bool launch(); // launch the run() if time ellapsed and not paused
operator SCDelay_t(){ return getTimeToRun(); }
// all other virtual methods are inherited from Event, included run()
private:
void initBasic();
SCoopDelay timer; // virtual timer used for identifting when Timer object should be launched
SCoopTimerCount_t counter; // by defaut = -1. if >0 then represent the max number of futur occurences
// ptrInt will force 16 bits for AVR (new in V1.2) and 32 for ARM
};
/******* MACRO FOR CREATING TIMER OBJECTS Easily ******/
// define an object class inheriting from SCoopTimer
// user has to define the object run() and setup() method only
#define defineTimerBegin_Period(timer,period) \
class timer : public SCoopTimer \
{public: timer () : SCoopTimer( period ) { state = SCoopNEW; }; \
operator SCDelay_t(){ return getTimeToRun(); };
#define defineTimerBegin_(timer) defineTimerBegin_Period(timer,0)
#define defineTimerBegin_X(x,A,B,FUNC, ...) FUNC // trick to create macro with optional arguments
#define defineTimerBegin(...) defineTimerBegin_X(,##__VA_ARGS__, \
defineTimerBegin_Period(__VA_ARGS__),\
defineTimerBegin_(__VA_ARGS__))
#define defineTimerEnd(timer) } ; timer timer ;
#define defineTimer_Period(timer,period) defineTimerBegin_Period(timer,period) void setup();void run(); defineTimerEnd(timer)
#define defineTimer_(timer) defineTimer_Period(timer,0)
#define defineTimer_X(x,A,B,FUNC, ...) FUNC // trick to create macro with optional arguments
#define defineTimer(...) defineTimer_X(,##__VA_ARGS__, \
defineTimer_Period(__VA_ARGS__),\
defineTimer_(__VA_ARGS__))
// quick definition of a timer run() with the bloc code corresponding to the run() { ... }
#define defineTimerRun_Period(timer,period) defineTimerBegin_Period(timer,period) void run(); defineTimerEnd(timer) void timer :: run()
#define defineTimerRun_(timer) defineTimerRun_Period(timer ,0)
#define defineTimerRun_X(x,A,B,FUNC, ...) FUNC // trick to create macro with optional arguments
#define defineTimerRun(...) defineTimerRun_X(,##__VA_ARGS__, \
defineTimerRun_Period(__VA_ARGS__),\
defineTimerRun_(__VA_ARGS__))
/********* SCoopTASK CLASS *******/
class SCoopTask : public SCoopEvent
{public:
SCoopTask(); // basic constructor
SCoopTask(SCoopStack_t* stack, ptrInt size);
SCoopTask(SCoopStack_t* stack, ptrInt size, SCoopFunc_t func);
~SCoopTask(); // just call terminate(). should be used only if a stack is made with malloc()
void init(SCoopStack_t* stack, ptrInt size, SCoopFunc_t func); // user function
#if SCoopTRACE > 0
void trace(char * xx);
#else
#define trace(x) ;
#endif
virtual void loop() // this is the call to user function. should be overloaded by a derived objects
{ if (userFunc) { userFunc(); } }
virtual void setup() { }; // called after start. should be overriden by child objects
void yield(); // this method is specific to the task. either return to scheduler, or switch to next task
void yield0() { yield(0); } // same but switch imediately without checking time
void yield(micros_t quantum); // same but force to check if the time passed is spent
void sleep(SCDelay_t ms); // will replace your usual arduino "delay" function
void sleepSync(SCDelay_t ms); // same as Sleep but delays are not absolute but relative to previous call to SleepSync
void sleepUntil(vbool& var); // just wait for an external variable to become true. variable will then be flaged to false
bool sleepUntil(vbool& var, SCDelay_t timeOut); // same, with timeout. return true, if the var was set true
ptrInt stackLeft(); // remaining stack space in this task
#if SCoopANDROIDMODE >= 2
void kill(); // only works in conjunction with SCoop::startLoop for dynamic tasks
#endif
uint8_t * pStack; // always point back and forth to the SP register for this task
uint8_t * pStackAddr; // keep a copy of the lowest stack adress. only used by stackleft()
micros_t quantumMicros; // copy of the SCoopQuantum global definition, so the user can overload the value in setup()
micros_t prevMicros; // memorize the value of the micros() counter when entering the task. Works with quantumMicros
#if SCoopTIMEREPORT > 0 // verifiy if we want to measure timing
micros_t yieldMicros; // time spent in the task during 1 complete scheduler cycle (average)
micros_t maxYieldMicros; // maximum average amount of time spent in the task
#endif
protected: // members below can be overidedn in a user object, if neded
virtual void start(); // initialize stack environement for calling run/loop. can be called by user if needed
virtual bool launch() ; // launch the task from where it was stop, or just launch run/loop or user function the first time
SCoopDelay timer; // virtual timer used by Sleep functions
private: // only internal methods used to optimize code size or readabilty
void initBasic(); // called by constructors. common code to each constructor variant
void init(SCoopStack_t* stack, ptrInt size)// only called by constructor
__attribute__((noinline)); // optimize code instead of speed, as this is called only once...
void sleepMs(SCDelay_t ms, bool sync); // intermediate function called by sleep and sleepsync to optimize code size
bool sleepUntilBool(vbool& var, bool checkTime);// intermediate function called by sleepUntil
void inline yieldInline(micros_t quantum)// potentially switch to pNext object, if time quantum given is reached
__attribute__((always_inline));
void yieldSpent(micros_t spent) // give control back to scheduler in order to switch to next task or come bacok in main loop()
__attribute__((noinline)); // speed optimization not that critical, as we already decided to switch
void yieldSwitch() // just do it when you want to go to it
__attribute__((noinline));
inline void startFirstLoop() // only used to simplify code reading. most likely the compiler will inline them
__attribute__((always_inline)); // internal use only, to split cod into eementary function, facilitate inlining
virtual void run() { } // not really used by us. putting it in private should avoid further overloading for derived object.
__attribute__((used)); // user will get an error message if trying to overload this method. loop() should be used!
// total variable size = 12 on AVR and 22 on ARM if TIMEREPORT = 0
}; // total variable size = 16 on AVR and 30 on ARM if TIMEREPORT >=1
/******* MACRO FOR CREATING ALLIGNED STACK Easily ******/
// define a stack as a static array , taking care of stack allignement
#define defineStack(x,y) static SCoopStack_t x [ ( y + sizeof(SCoopStack_t) -1)/ sizeof(SCoopStack_t)];
/******* MACRO FOR CREATING TASK OBJECTS Easily ******/
// define a new object class inheriting from the SCoopTask object
#define defineTaskBegin_Size( mytask , stacksize ) \
defineStack( mytask##Stack , stacksize ) \
class mytask : public SCoopTask \
{ public: mytask ():SCoopTask(& mytask##Stack [0] , stacksize ) { state = SCoopNEW; };
#define defineTaskEnd(mytask) } ; mytask mytask ;
#define defineTask_Size( task , stacksize) defineTaskBegin_Size( task, stacksize) void setup(); void loop(); defineTaskEnd(task)
#define defineTask_( task ) defineTask_Size( task , SCoopDefaultStackSize )
// this is used to handle multiple optional parameters in macro ... see stackoverflow forum !
#define defineTask_X(x,A,B,FUNC, ...) FUNC
#define defineTask(...) defineTask_X(,##__VA_ARGS__, \
defineTask_Size(__VA_ARGS__),\
defineTask_(__VA_ARGS__))
// define a new object class inheriting from the SCoopTask object
// predefine the prototype for loop and expect the user to complete with a bloc statement { ... }
#define defineTaskLoop_Size( task , stacksize ) defineTask_Size( task , stacksize ) void task :: setup() { }; void task :: loop()
#define defineTaskLoop_( task ) defineTaskLoop_Size( task , SCoopDefaultStackSize )
// this is used to handle multiple optional parameters in macro ... see stackoverflow forum !
#define defineTaskLoop_X(x,A,B,FUNC, ...) FUNC
#define defineTaskLoop(...) defineTaskLoop_X(,##__VA_ARGS__, \
defineTaskLoop_Size(__VA_ARGS__),\
defineTaskLoop_(__VA_ARGS__))
/******* MAIN SCoop CLASS ******/
class SCoop // used only once for instanciating "mySCoop"
{ public:
SCoop(); // basic constructor
void start(micros_t cycleTime); // same as start but will compute a task quantum based on provided user expected cycle time.
void start(micros_t cycleTime, micros_t mainLoop); // same as start but will compute a task quantum based on provided time.
void start(); // start all registered objects in the list
void cycle(); // execute a complete cycle (all tasks , all timer, all event before returning)
#if SCoopANDROIDMODE >= 1
SCoopTask* startLoop(SCoopFunc_t task, uint32_t stackSize = AndroidSchedulerDefaultStack); // dynamic task creation ... !
#endif
void yield(); // can be called from where ever in order to Force the switch to next task
void yield0(); // can be called from where ever in order to Force the switch to next task
void sleep(SCDelay_t time); // quick implementation of a delay() type of function, in case the standard Arduino delay doesnt contain yield()
void delay(uint32_t ms); // same code as in Arduino 1.5
uint8_t* mainEnv; // used to store the main Stack register of the main loop()
SCoopEvent* Current; // curent task in the yield cycle
SCoopTask * Task; // task pointer
vui8 Atomic;
micros_t startQuantum; // initial value for each task time quantum. use default, otherwise calculated by start(x)
micros_t quantumMicros; // initial value for the main loop time quantum. use default, otherwise calculated by start(x)
micros_t targetCycleMicros; // this represent the target cycle time declared in the start(xxx), or the sum of all quantum
#if SCoopYIELDCYCLE == 0
micros_t quantumMicrosReal; // this variable is same as quantum micros but divided by number of tasks
#endif
#if SCoopTIMEREPORT > 0 // verifiy if we want to measure timing
micros_t cycleMicros; // total cycle time (average) for N cycle
micros_t maxCycleMicros; // maximum average amount of time spent in a full cycle
#endif
// total variable size : 13 to 19 bytes on ARM, 25 to 37 bytes on ARM
};
// possibility to use this excellent trick for declaring non-yield section with macro SCoopATOMIC { .. code ... } credits to Dean Camera!!!
#ifndef yieldATOMIC
void inline __decAtomic(const uint8_t *__s) { --SCoopInstanceNickName.Atomic; }
uint8_t inline __incAtomic(void) { ++SCoopInstanceNickName.Atomic; return 1; }
#define SCoopATOMIC for ( uint8_t __temp __attribute__((__cleanup__(__decAtomic))) = __incAtomic(); __temp ; __temp = 0 )
#define yieldATOMIC SCoopATOMIC
#else
#define SCoopATOMIC yieldATOMIC
#endif
#ifndef yieldPROTECT
void inline __SCoopUnprotect(uint8_t* *__s) { uint8_t* staticFlag = *__s; *staticFlag = 0; };
#define SCoopPROTECT() static uint8_t __SCoopProtect = 0; \
register uint8_t* __temp __attribute__((__cleanup__(__SCoopUnprotect)))=& __SCoopProtect; \
while (__SCoopProtect) yield0(); __SCoopProtect = 1;
#define yieldPROTECT() SCoopPROTECT()
#else
#define SCoopPROTECT() yieldPROTECT()
#endif
#ifndef yieldUNPROTECT
#define SCoopUNPROTECT() { __SCoopProtect = 0; }
#define yieldUNPROTECT() SCoopUNPROTECT()
#else
#define SCoopUNPROTECT() yieldUNPROTECT()
#endif
// encapsulate the next block code within noInterrupt() and interrupts() // credits to Dean Camera
#ifndef ASM_ATOMIC
void inline __SCoopInterrupts(const uint8_t *__s) { interrupts(); }
uint8_t inline __SCoopNoInterrupts(void) { noInterrupts(); return 1; }
#define ASM_ATOMIC for ( uint8_t __temp __attribute__((__cleanup__(__SCoopInterrupts))) = __SCoopNoInterrupts(); __temp ; __temp = 0 )
#endif
/*************** SCoopFIFO CLASS ******************/
// easy way of handling tx rx buffers for bytes, int or long or any structure < 256 bytes
class SCoopFifo
{public:
SCoopFifo(void * fifo, const uint8_t itemSize, const uint16_t itemNumber);
uint16_t count(); // return number of samples available in the buffer
bool put(void* var); // store one sample in the buffer. return true if ok, false if buffer is full
bool putChar(const uint8_t value);
bool putInt(const uint16_t value);
bool putLong(const uint32_t value);
bool get(void* var); // provide the older item available in the buffer. return true if ok, false if the buffer is empty
uint8_t getChar(); // return the next value in the fifo, as an integer depending on the itemsize. it will wait until available!!!
uint16_t getInt(); // return the next value in the fifo, as an integer depending on the itemsize. it will wait until available!!!
uint32_t getLong(); // return the next value in the fifo, as an integer depending on the itemsize. it will wait until available!!!
uint16_t flush(); // empty the fifo (disable and ENABLE interrupts)
uint16_t flushNonAtomic(); // same without touching interrupt flags
operator uint16_t() { return count(); }
private:
void getYield(void* var); // return an item and potentially wait until it is available. calls yield() in the meantime
uint8_t* volatile ptrIn;
uint8_t* volatile ptrOut;
uint8_t itemSize;
uint8_t* ptrMin;
uint8_t* ptrMax;
};
/*************** MACRO TO CREATE FIFO BUFFER and INSTANCIATE OBJECT ******************/
#define defineFifo( name , type , number ) \
type name##type##number [ number ]; \
SCoopFifo name ( name##type##number , sizeof( type ), number );
#endif