初始化提交

This commit is contained in:
王立帮
2024-07-20 22:09:06 +08:00
commit c247dd07a6
6876 changed files with 2743096 additions and 0 deletions

View File

@@ -0,0 +1,24 @@
#############################################################################
#
# Makefile for librf24 examples on Raspberry Pi
#
# License: GPL (General Public License)
# Author: gnulnulf <arco@appeltaart.mine.nu>
# Date: 2013/02/07 (version 1.0)
#
# Description:
# ------------
# use make all and make install to install the examples
# You can change the install directory by editing the prefix line
#
ifeq ($(wildcard ../../Makefile.inc), )
$(error Configuration not found. Run ./configure first)
endif
include ../../Makefile.inc
# define all programs
PROGRAMS = gettingstarted_call_response_int gettingstarted_call_response_int2 transfer_interrupt pingpair_dyn_int
include ../Makefile.examples

View File

@@ -0,0 +1,147 @@
/*
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
*/
/**
* Example for efficient call-response using ack-payloads and interrupts
*
* This example continues to make use of all the normal functionality of the radios including
* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
* This allows very fast call-response communication, with the responding radio never having to
* switch out of Primary Receiver mode to send back a payload, but having the option to switch to
* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
RF24 radio(22, 0); //GPIO, SPI-BUS
/********** User Config *********/
// Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default.
bool radioNumber = 1;
int interruptPin = 23;
/********************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint8_t addresses[][6] = {"1Node", "2Node"};
volatile bool role_ping_out = 1, role_pong_back = 0, role = 0;
uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth
volatile bool gotResponse = false;
void intHandler()
{
if (role == role_pong_back) {
uint8_t pipeNo, gotByte; // Declare variables for the pipe and the byte received
if (radio.available(&pipeNo)) { // Read all available payloads
radio.read(&gotByte, 1);
// Since this is a call-response. Respond directly with an ack payload.
gotByte += 1; // Ack payloads are much more efficient than switching to transmit mode to respond to a call
radio.writeAckPayload(pipeNo, &gotByte, 1); // This can be commented out to send empty payloads.
printf("Loaded next response %d \n\r", gotByte);
}
}
}
int main(int argc, char** argv)
{
cout << "RPi/RF24/examples/gettingstarted_call_response_int\n";
radio.begin();
radio.enableAckPayload(); // Allow optional ack payloads
radio.enableDynamicPayloads();
radio.printDetails(); // Dump the configuration of the rf unit for debugging
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>";
getline(cin, input);
if (input.length() == 1) {
myChar = input[0];
if (myChar == '0') {
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
} else {
cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
// This opens two pipes for these two nodes to communicate
// back and forth.
if (!radioNumber) {
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1, addresses[1]);
} else {
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1, addresses[0]);
}
radio.startListening();
radio.writeAckPayload(1, &counter, 1);
radio.maskIRQ(1, 1, 0); //Mask tx_ok & tx_fail interrupts
attachInterrupt(interruptPin, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23
// forever loop
while (1) {
/****************** Ping Out Role ***************************/
if (role == role_ping_out) { // Radio is in ping mode
uint8_t gotByte; // Initialize a variable for the incoming response
radio.stopListening(); // First, stop listening so we can talk.
printf("Now sending %d as payload. ", counter); // Use a simple byte counter as payload
unsigned long time = millis(); // Record the current microsecond count
if (radio.write(&counter, 1)) { // Send the counter variable to the other radio
if (!radio.available()) { // If nothing in the buffer, we got an ack but it is blank
printf("Got blank response. round-trip delay: %lu ms\n\r", millis() - time);
} else {
while (radio.available()) { // If an ack with payload was received
radio.read(&gotByte, 1); // Read it, and display the response time
printf("Got response %d, round-trip delay: %lu ms\n\r", gotByte, millis() - time);
counter++; // Increment the counter variable
}
}
} else {
printf("Sending failed.\n\r");
} // If no ack response, sending failed
sleep(1); // Try again later
}
/****************** Pong Back Role ***************************/
} //while 1
} //main

View File

@@ -0,0 +1,156 @@
/*
TMRh20 2014 - Updated to work with optimized RF24 Arduino library
*/
/**
* Example for efficient call-response using ack-payloads
*
* This example continues to make use of all the normal functionality of the radios including
* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well.
* This allows very fast call-response communication, with the responding radio never having to
* switch out of Primary Receiver mode to send back a payload, but having the option to switch to
* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <unistd.h>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
RF24 radio(22, 0);
/********** User Config *********/
// Assign a unique identifier for this node, 0 or 1. Arduino example uses radioNumber 0 by default.
bool radioNumber = 1;
int interruptPin = 23;
/********************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint8_t addresses[][6] = {"1Node", "2Node"};
bool role_ping_out = 1, role_pong_back = 0, role = 0;
uint8_t counter = 1; // A single byte to keep track of the data being sent back and forth
uint32_t timer = 0;
void intHandler()
{
bool tx_ok, tx_fail, rx;
radio.whatHappened(tx_ok, tx_fail, rx);
if (tx_fail) {
printf("Sending failed.\n\r");
}
if (role == role_ping_out && tx_ok) {
if (!radio.available()) {
printf("Got blank response. round-trip delay: %u ms\n\r", millis() - timer);
}
}
if (role == role_ping_out) {
while (radio.available()) {
uint8_t gotByte;
radio.read(&gotByte, 1);
printf("Got response %d, round-trip delay: %u ms\n\r", gotByte, millis() - timer);
counter++;
}
}
if (role == role_pong_back) {
if (tx_ok) {
printf("Ack Payload Sent\n");
}
uint8_t pipeNo, gotByte;
if (radio.available(&pipeNo)) {
radio.read(&gotByte, 1);
gotByte += 1;
radio.writeAckPayload(pipeNo, &gotByte, 1);
printf("Loaded next response %d \n\r", gotByte);
}
}
}
int main(int argc, char** argv)
{
cout << "RPi/RF24/examples/gettingstarted_call_response\n";
radio.begin();
radio.enableAckPayload(); // Allow optional ack payloads
radio.enableDynamicPayloads();
radio.printDetails(); // Dump the configuration of the rf unit for debugging
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for pong_back, 1 for ping_out (CTRL+C to exit)\n>";
getline(cin, input);
if (input.length() == 1) {
myChar = input[0];
if (myChar == '0') {
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
} else {
cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
// This opens two pipes for these two nodes to communicate
// back and forth.
if (!radioNumber) {
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1, addresses[1]);
} else {
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1, addresses[0]);
}
radio.startListening();
radio.writeAckPayload(1, &counter, 1);
attachInterrupt(interruptPin, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23
// forever loop
while (1) {
/****************** Ping Out Role ***************************/
if (role == role_ping_out) { // Radio is in ping mode
//uint8_t gotByte; // Initialize a variable for the incoming response
radio.stopListening(); // First, stop listening so we can talk.
printf("Now sending %d as payload. ", counter); // Use a simple byte counter as payload
timer = millis(); // Record the current microsecond count
radio.startWrite(&counter, 1, false); // Send the counter variable to the other radio
sleep(1); // Try again later
}
/****************** Pong Back Role ***************************/
} //while 1
} //main

View File

@@ -0,0 +1,177 @@
/*
TMRh20 2014 - Optimized RF24 Library Fork
*/
/**
* Example using Dynamic Payloads
*
* This is an example of how to use payloads of a varying (dynamic) size.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <RF24/RF24.h>
using namespace std;
//
// Hardware configuration
// Configure the appropriate pins for your connections
/****************** Raspberry Pi ***********************/
RF24 radio(22, 0); // CE GPIO, CSN SPI-BUS
int interruptPin = 23; // GPIO pin for interrupts
/**************************************************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t pipes[2] = {0xF0F0F0F0E1LL, 0xF0F0F0F0D2LL};
const int min_payload_size = 4;
const int max_payload_size = 32;
const int payload_size_increments_by = 1;
int next_payload_size = min_payload_size;
char receive_payload[max_payload_size + 1]; // +1 to allow room for a terminating NULL char
bool role_ping_out = 1, role_pong_back = 0;
bool role = 0;
void intHandler()
{
//
// Pong back role. Receive each packet, dump it out, and send it back
//
if (role == role_pong_back) {
// if there is data ready
if (radio.available()) {
// Dump the payloads until we've gotten everything
uint8_t len = 0;
while (radio.available()) {
// Fetch the payload, and see if this was the last one.
len = radio.getDynamicPayloadSize();
radio.read(receive_payload, len);
// Put a zero at the end for easy printing
receive_payload[len] = 0;
// Spew it
printf("Got payload size=%i value=%s\n\r", len, receive_payload);
}
// First, stop listening so we can talk
radio.stopListening();
// Send the final one back.
radio.write(receive_payload, len);
printf("Sent response.\n\r");
// Now, resume listening so we catch the next packets.
radio.startListening();
}
}
}
int main(int argc, char** argv)
{
// Print preamble:
cout << "RF24/examples/pingpair_dyn/\n";
// Setup and configure rf radio
radio.begin();
radio.enableDynamicPayloads();
radio.setRetries(5, 15);
radio.printDetails();
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for receiver, 1 for transmitter (CTRL+C to exit) \n>";
getline(cin, input);
if (input.length() == 1) {
myChar = input[0];
if (myChar == '0') {
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
} else {
cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
if (role == role_ping_out) {
radio.openWritingPipe(pipes[0]);
radio.openReadingPipe(1, pipes[1]);
} else {
radio.openWritingPipe(pipes[1]);
radio.openReadingPipe(1, pipes[0]);
radio.startListening();
}
attachInterrupt(interruptPin, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23
// forever loop
while (1) {
if (role == role_ping_out) {
// The payload will always be the same, what will change is how much of it we send.
static char send_payload[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ789012";
// First, stop listening so we can talk.
radio.stopListening();
// Take the time, and send it. This will block until complete
printf("Now sending length %i...", next_payload_size);
radio.write(send_payload, next_payload_size);
// Now, continue listening
radio.startListening();
// Wait here until we get a response, or timeout
unsigned long started_waiting_at = millis();
bool timeout = false;
while (!radio.available() && !timeout) {
if (millis() - started_waiting_at > 500) {
timeout = true;
}
}
// Describe the results
if (timeout) {
printf("Failed, response timed out.\n\r");
} else {
// Grab the response, compare, and send to debugging spew
uint8_t len = radio.getDynamicPayloadSize();
radio.read(receive_payload, len);
// Put a zero at the end for easy printing
receive_payload[len] = 0;
// Spew it
printf("Got response size=%i value=%s\n\r", len, receive_payload);
}
// Update size for next time.
next_payload_size += payload_size_increments_by;
if (next_payload_size > max_payload_size) {
next_payload_size = min_payload_size;
}
// Try again 1s later
delay(100);
}
}
}

View File

@@ -0,0 +1,190 @@
/*
TMRh20 2014
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation.
*/
/** General Data Transfer Rate Test
* This example demonstrates basic data transfer functionality with the
updated library. This example will display the transfer rates acheived using
the slower form of high-speed transfer using blocking-writes.
*/
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <RF24/RF24.h>
#include <unistd.h>
using namespace std;
//
// Hardware configuration
//
/****************** Raspberry Pi ***********************/
// Radio CE Pin, CSN Pin, SPI Speed
// See http://www.airspayce.com/mikem/bcm2835/group__constants.html#ga63c029bd6500167152db4e57736d0939 and the related enumerations for pin information.
// Setup for GPIO 22 CE and CE0 CSN with SPI Speed @ 4Mhz
//RF24 radio(RPI_V2_GPIO_P1_22, BCM2835_SPI_CS0, BCM2835_SPI_SPEED_4MHZ);
// NEW: Setup for RPi B+
//RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ);
// Setup for GPIO 15 CE and CE0 CSN with SPI Speed @ 8Mhz
RF24 radio(RPI_V2_GPIO_P1_15, RPI_V2_GPIO_P1_24, BCM2835_SPI_SPEED_8MHZ);
/*** RPi Alternate ***/
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
// See http://tmrh20.github.io/RF24/RPi.html for more information on usage
//RPi Alternate, with MRAA
//RF24 radio(15,0);
//RPi Alternate, with SPIDEV - Note: Edit RF24/arch/BBB/spi.cpp and set 'this->device = "/dev/spidev0.0";;' or as listed in /dev
//RF24 radio(22,0);
/****************** Linux (BBB,x86,etc) ***********************/
// See http://tmrh20.github.io/RF24/pages.html for more information on usage
// See http://iotdk.intel.com/docs/master/mraa/ for more information on MRAA
// See https://www.kernel.org/doc/Documentation/spi/spidev for more information on SPIDEV
// Setup for ARM(Linux) devices like BBB using spidev (default is "/dev/spidev1.0" )
//RF24 radio(115,0);
//BBB Alternate, with mraa
// CE pin = (Header P9, Pin 13) = 59 = 13 + 46
//Note: Specify SPI BUS 0 or 1 instead of CS pin number.
//RF24 radio(59,0);
/**************************************************************/
// Radio pipe addresses for the 2 nodes to communicate.
const uint64_t addresses[2] = {0xABCDABCD71LL, 0x544d52687CLL};
uint8_t data[32];
unsigned long startTime, stopTime, counter, rxTimer = 0;
void intHandler()
{
//Read as long data is available
//Single interrupts may be lost if a lot of data comes in.
while (radio.available()) {
radio.read(&data, 32);
counter++;
}
}
int main(int argc, char** argv)
{
bool role_ping_out = 1, role_pong_back = 0;
bool role = 0;
// Print preamble:
cout << "RF24/examples/Transfer/\n";
radio.begin(); // Setup and configure rf radio
radio.setChannel(1);
radio.setPALevel(RF24_PA_MAX);
radio.setDataRate(RF24_1MBPS);
radio.setAutoAck(1); // Ensure autoACK is enabled
radio.setRetries(2, 15); // Optionally, increase the delay between retries & # of retries
radio.setCRCLength(RF24_CRC_8); // Use 8-bit CRC for performance
radio.printDetails();
/********* Role chooser ***********/
printf("\n ************ Role Setup ***********\n");
string input = "";
char myChar = {0};
cout << "Choose a role: Enter 0 for receiver, 1 for transmitter (CTRL+C to exit)\n>";
getline(cin, input);
attachInterrupt(23, INT_EDGE_FALLING, intHandler); //Attach interrupt to bcm pin 23
if (input.length() == 1) {
myChar = input[0];
if (myChar == '0') {
cout << "Role: Pong Back, awaiting transmission " << endl << endl;
} else {
cout << "Role: Ping Out, starting transmission " << endl << endl;
role = role_ping_out;
}
}
/***********************************/
if (role == role_ping_out) {
radio.openWritingPipe(addresses[1]);
radio.openReadingPipe(1, addresses[0]);
radio.stopListening();
} else {
radio.openWritingPipe(addresses[0]);
radio.openReadingPipe(1, addresses[1]);
radio.startListening();
}
for (int i = 0; i < 32; i++) {
data[i] = rand() % 255; //Load the buffer with random data
}
// forever loop
while (1) {
if (role == role_ping_out) {
sleep(2);
printf("Initiating Basic Data Transfer\n\r");
long int cycles = 10000; //Change this to a higher or lower number.
// unsigned long pauseTime = millis(); //Uncomment if autoAck == 1 ( NOACK )
startTime = millis();
for (int i = 0; i < cycles; i++) { //Loop through a number of cycles
data[0] = i; //Change the first byte of the payload for identification
if (!radio.writeFast(&data, 32)) { //Write to the FIFO buffers
counter++; //Keep count of failed payloads
}
//This is only required when NO ACK ( enableAutoAck(0) ) payloads are used
/* if(millis() - pauseTime > 3){ // Need to drop out of TX mode every 4ms if sending a steady stream of multicast data
pauseTime = millis();
radio.txStandBy(); // This gives the PLL time to sync back up
}
*/
}
stopTime = millis();
if (!radio.txStandBy()) {
counter += 3;
}
float numBytes = cycles * 32;
float rate = numBytes / (stopTime - startTime);
printf("Transfer complete at %.2f KB/s \n\r", rate);
printf("%lu of %lu Packets Failed to Send\n\r", counter, cycles);
counter = 0;
}
if (role == role_pong_back) {
if (millis() - rxTimer > 1000) {
rxTimer = millis();
printf("Rate: ");
float numBytes = counter * 32;
printf("%.2f KB/s \n\r", numBytes / 1000);
printf("Payload Count: %lu \n\r", counter);
counter = 0;
}
delay(2);
}
} // loop
} // main